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FOREWORD

The material presented here is taken from lectures given by the author in an informal semi-
nar on quantum field theories, held in the Radiation Division of the U.S. Naval Research
Laboratory. The purpose of these lectures was to present a calculation of the propagators, or
Green's functions, of the different types that appear in quantum field theories within the
framework of the theory of boundary value problems for linear partial differential equations,
thereby rendering the Green's functions more amenable to physical interpretation. Further,
a classical setting of the propagators separates neatly those properties of the propagators which
may be discussed without recourse to the procedures of second quantization from those proper-
ties which do require the latter methods.

A perusal of the table of contents will give the reader an idea of the scope of the subject
matter and the direction that is followed. Chapter 1 is devoted primarily to the basic ideas that
will be needed from the special theory of relativity and geometry, together with a presentation
of our notation. Chapter 2 introduces the various boundary value problems that may be posed
in conjunction with the Klein-Gordon equation and the auxiliary functions associated with these
problems. It will become clear in the course of the development of these auxiliary functions,
variously called propagators and Green's functions, that their physical interpretations reside
in the formulation of the specific boundary value problems they enable us to solve. The propa-
gators are determined explicitly, in this chapter, in terms of known higher transcendental
functions, and are also presented in several integral representations that are useful in quantum
field theories, or appear often in such theories. Chapter 2 is basic to the rest of the material of
these lectures in that the formulation of the boundary value problem for the Klein-Gordon
equation carries over to the wave equation for both scalar and vector fields virtually unchanged,
and carries over, in substance, to the Dirac equation. In addition, the detailed results of this
chapter are used in the calculations of the subsequent chapters. The reader for whom Chapter 2
has become a part of his own experience will find the subsequent chapters relatively simple
fare. A summary of the results of Chapter 2 is presented for easy reference.

Chapter 3 contains a discussion of the boundary value problems of Chapter 2 but with respect
to the wave equation. In applying the Green's functions of the wave equation to an integral
formulation of the field equations of the four-potential for the electromagnetic field, we take
proper account of the fact that the four-potential must satisfy the Lorentz condition. The
boundary value problems of Chapter 2 vis-a-vis the Dirac equation are discussed in Chapter 4.

Chapter 5 is a simple introduction to scalar meson field theory with second quantization in
order to show how a calculation of the propagators is rendered quite simple by the results of
Chapter 2. Although analogous developments for the electromagnetic and electron fields are
easy to carry through, they are not done here. Finally, a brief discussion is given, in this chapter,
of a few of the mathematical problems that arise in quantum field theories. The discussion of
mathematical rigor here is kept brief, for such a discussion in depth would carry us too far
afield of our original purpose and requires volumes in itself. Finally, mathematical rigor in
quantum field theory is still only little understood. The interested reader will find pertinent
mathematical detail and development in, for example, Hille and Phillips, "Functional Analysis
and Semi-groups," esp. Chapters I-V.

Finally, we must mention the subject of references. The reader will find an occasional ref-
erence in footnotes scattered sparsely throughout the text. The author made no effort to system-
atically search the literature to be complete or to find original source material. The subject
matter has become generally too well known for this to be necessary in a set of lectures; many
textbooks will supply such a list of reference material. However the author wants to state his
indebtedness in particular to the book "Field Theory," Vol. I, by Jan Rzewuski (Polish Academy
of Science, Physical Monographs; Hofner Publishing Company, New York) and recommends
it highly to the reader.
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The Propagators of Quantum Field Theories as Green's Functions
for Boundary Value Problems in Partial Differential Equations

JOHN N. HAYES

Analysis and Theory Branch
Radiation Division

CHAPTER 1
RELATIVISTIC CONCEPTS; NOTATIONS

It is not our purpose to develop the special
theory of relativity, but to present those ideas
from that discipline that are pertinent to the subse-
quent work of this discussion. This short discus-
sion also provides the opportunity of presenting
the notation that will be used. On this latter point,
the reader will no doubt be aware of the plethora
of notations that are widely used; the choice that
one makes, of course, is immaterial insofar as
the physics is concerned, so that the selection that
is made is based on personal tastes or is simply
arbitrary. However, once having made a selec-
tion, we shall find little difficulty in comparing the
final results with the conclusion of others using
different conventions.

NOTATION

A point in space-time will be denoted by various
symbols: x, (x0 , xi, X2, X 3 ), (XO, Xi), (xo, r), (x,);
a space-time point will also, at times, be referred to
as an event. The coordinates of a point in space-
time, x,, will always be given in terms of the covari-
ant components; on no occasion shall the contra-
variant components be used. If a = (a,) and
b = (by) are two four-vectors, their scalar or inner
product will be denoted by a * b or ab,, which will
be a symbolic representation of the number
-aobo + a1 b1 + a2b2 + a3b3 = -aobo + a * b. The
length of any four-vector a is Va a; since the
inner product is clearly indefinite, the number
a2 

= a * a may be positive, zero, or negative. If
a2 

< 0, the vector is said to be a time-like vector;
if a2 > 0, the vector is said to be a space-like vector.

A set of four-points, S = {x, y, z, ... } is said to
be a space-like set if (x - y) 2 > 0 for every pair
(x, y) of elements, each in S. In particular, if S

NRL Problem H02-22; Project RR-002-01-41-4908. This is a final report
on one aspect of a continuing problem. Manuscript submitted October
14, 1963.

constitutes a space-like three-dimensional "con-
tinuum" in four-space, S will be called a space-
like hypersurface. (For example, the set of all
space-time points for which x0 is the same is the
entire three-dimensional space we ordinarily
perceive, and this constitutes a space-like hyper-
surface in the space-time continuum.) With the
exception of the preceding parenthetic remark,
meaningful definitions arise from this paragraph
if the term "space-like" is replaced by "time-
like" and (x -y)2 > 0 is replaced by (x - y) 2 < 0.

The set of four-points C, = {u , VI w, ... } such
that (U - x) 2 

= 0 for all u belonging to C., is said
to be the light-cone associated with the point x;
here, x may be any point of the space-time con-
tinuum. If each point of C, is interpreted as a
physical event, then CZ. is that subset of all physical
events whose occurrence coincides with the arrival
of a light-signal from the event x or whose sig-
nals arrive at the event x.

The set of all time-like points L+= {u, v, w, ... }
such that uo - xo > 0 lie within the forward light-
cone associated with point x, where again x is any
point of the space-time continuum; similarly, the
set Lx1 = {u, v, w, ... } of time-like points such that
uo - xo < 0 are said to lie within the backward light-
cone of the event x.

A geometric representation of the above sets is
obtained in the usual way; we suppress two of the
space components of a four-point x in order that
a point in the space-time continuum may be repre-
sented by a point in a plane; then a Cartesian
representation of the remaining pair is used,
with the remaining space component, say xi, as the
abscissa and x0 as the ordinate. The union of the
sets C0 and C0 is the light-cone C0 associated with
the point x = 0; the shaded region marked by Lto
is within the forward light-cone associated with the
origin, while the crosshatched area marked by

1
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Figure I

Lt is within the backward light-cone of the origin.*
The axis xo = 0 is a special and important case of a
space-like hypersurface S(1), while S(2) is a more
general space-like hypersurface, always possessing
the property that its slope nowhere acquires the
value +1 or -1 and is always between these two
members.

Let x be a point in the space-time continuum
not on, say, the space-like hypersurface S(2),
but otherwise arbitrary; with x, we associated a
time-like hypersurface T= {u, v, w, ... } such that
uf = xi, all u in T. In our geometric representation
T is a straight line through x parallel to the xo axis.
T must intersect S(2) at some point z whose coor-
dinates are finite. If zo > x0, we shall say that xo
precedes S(2), or is prior to S(2), or earlier than S(2);
if z0 < x0 , we shall say that xo is later than S(2).

Note that x0 being earlier than S(2) does not imply
that all events on S(2) occur at a time later than the
event x occurs, as may be seen from the example
represented geometrically in Fig. 1. Of course, if
the hypersurface in question is one for which uo =
constant, all u E S, such as S(1) in Fig. 1, then x
indeed is an event which occurs prior to all events
on S. Similar observations for the case that x is
later than S(2) may be made.

LORENTZ TRANSFORMATIONS

A Lorentz transformation is, by definition, a
linear transformation on the components of a
space-time which is, first, invertible, that is, the

*Oftentimes, the "solid' set represented by the union of L and Co
will be referred to as the forward light-cone. The context will usually
make clear whether one is speaking of points on C' or in L'.

inverse of the transformation exists, and second,
leaves the form (x - y)2 unchanged in value and
in form, that is, if x' is the transform of x, and
y' of y, then (x' -y)2 = (x - y)2 . A function on
the space-time continuum y(x) with the property
so(x') o= (x) when x' is the Lorentz transform of
x is called invariant. Thus, a Lorentz transforma-
tion is an invertible linear transformation which
leaves the form (x - y)

2 invariant. It follows im-
mediately then that under Lorentz transforma-
tions, space-like hypersurfaces transform into
space-like hypersurfaces, time-like hypersurfaces
transform into time-like hypersurfaces, and the
light-cone of any point transforms into the light-
cone of the transformed point. The forward and
backward light-cones of a given point must be
given more consideration, which will be done
when more detailed study of Lorentz transforma-
tion is given.

Let x be a point of the space-time continuum
whose coordinates are (xo, xi, X2, X3) = (x,).
The point x', derived from performing a Lorentz
transformation on x, has components x0, xI,
x2, x3 which are related to those of x by the equa-
tion

X = ax xx + b,. (1)

where g = 0, 1, 2, 3, and the Einstein summation
convention is used. Equation (1) is linear by our
definition of the preceding paragraph. The point
y transforms to the point y' by equations of the
same form as (1). The condition that (x -y)2 =

(X' - y')2 leads to the condition

or

aP aM. = 85vx

det (ax) =-I.

(2)

(3)

Let ax, be the cofactor of a,x; then

ax, a., = 8vx - (4)

Comparing Eqs. (4) and (3), we see that ax, = ax;
Eq. (1) is now readily inverted, by multiplying by
aP,, = atop and summing over bt:

a,,v x = aMax + ba a, = Xv - J3

or

Xp - ap xs' + /v . (5)

2



NRL REPORT 6028

With Eq. (5) and the invariance of (x - y)
2 , we

conclude

aV,, axA, = 5 . (6)

The definition of the Lorentz group given above
admits a wider class of transformations than those
encountered in the usual development of the
theory of relativity; that is, in applying the prin-
ciple of relativity to determine the transforma-
tions of the components of a given point in one
inertial frame in terms of its components in an-
other inertial frame, one obtains that subclass of
the above transformation that may be developed
in a continuous manner from the identity trans-
formation and with the characteristic that ao0 > 0;
this class has the property also that det la,,I = +1;
this subgroup of the full Lorentz group is called
the proper orthochronous Lorentz group.(We are
not attempting to prove the statements of this par-
agraph, but content ourselves here to accept their
validity.) It is then clear that if x is a point in the
forward light-cone of the origin, then (x' - b) is
also, where b is the image of the origin under the
Lorentz transformation. Thus under Lorentz
transformations that are proper and orthochro-
nous, time-like intervals (x - y) transform into
time-like intervals, space-like into space-like,
with the sign of the zero component preserved;
here it follows that the forward and backward
light-cones of a given point transform under
proper orthochronous Lorentz transformations
into the forward and backward light-cones of the
transformed point, respectively. It becomes equal-
ly clear that if x precedes the surface S in one
inertial frame, under a proper orthochronous
Lorentz transformation, x' precedes S'. Finally,
we observe that if S is, in one inertial frame, the
hyperplane x 0 = constant, then under a proper
orthochronous transformation, S transforms into
a hyperplane no longer parallel, in general, to any
hyperplane of the form x0 = constant; and if one
has a hyperplane of the latter type, there exists a
Lorentz transformation which will transform the
hyperplane into one parallel to xo = constant in
some (one) inertial frame. From this, it follows di-
rectly that if x precedes the hyperplane S in a
given inertial frame, there exists another iner-
tial frame wherein x', the image of x under the
corresponding Lorentz transformation, not only
precedes the transformed surface, but all events
on the surface will have occurred at a time, in

this reference frame, later than the event x'. (That
this result is not true for more general hyper-
surfaces may be seen by considering a point x
that precedes a nonplanar hypersurface that
approaches the backward light-cone asymptotical-
ly. Since we are not concerned with such cases,
we shall not dwell any further on this point.)

An example of a nonorthochronous, improper
Lorentz transformation is

X = - x 0

XI = X I
X -i

X 2= X2

X3 = X3

(7)

If x precedes the hypersurface S, it is clear that
under the above transformation the image S'
would precede x', the image of x under Eq. (7).
Such transformations are of considerable interest
in modern field theories but do not play any par-
ticularly important role for our purposes; there-
fore, their study will not be pursued further here.

REPRESENTATIONS OF THE
LORENTZ GROUP; PARTIAL
DIFFERENTIAL EQUATIONS

Let 0 be an observer in a given inertial frame
studying a system which, he discovers, requires n
functions f, (x) =fj (r,xo) to describe it completely.
According to the principle of relativity, an ob-
server O' in a second inertial frame will also re-
quire n functions, fk(x') to describe the system.
The functional values at a point P as observed by
O' will be related to the functional values at the
point P as observed by 0; if the coordinates of P
are x' and x in the inertial frames of O' and 0 re-
spectively, then with L denoting the Lorentz trans-
formation parameters,

(8)

where AL is a general function of fl, f2, .-., ,, but
one such that the set {[AL'], [AL''],...} form a
continuous group; that is, Eq. (8) are required to
be a realization of the Lorentz group. Hence,

ALk-1

3

fh'. (x') = Al (fi (x), f, (x), ... , f. (x))k
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the inverse to AL, exists:

fj ( X) = AL-'1 (f { (XI'), f ' (XIt),.. f t ( X )) ) (9)
Observer 0 will determine that his set [{ff} of

functions are, in general, correlated with one an-
other through some set of equations which we may
denote by

M al xf2 , .. .1 fn) = °* (10)

Again from the principle of relativity, Eq. (10) may
be written so that observer O' arrives at the same
equation except for primes in the appropriate
places.

A very important class of fields will be those that
obey some form of superposition principle; if 0
determines that {fi} and {gi} each satisfy (10) and
that {fj + gj} satisfies Eq. (10), then O' must ob-
serve that f,. + ge also satisfies his version of Eq.
(10). Thus, f + g {fi + gi} is an acceptable field
configuration and transforms according to Eq.
(8) also:

hk (X ) = A k 1 X o() 2 (X)

+ 92(X) ,---, fn(X) + 9X) ) * ( 1)
In addition

hk (S) = fk (X') J gk (X') (12)

where fk (x') and gk(x') are related to the func-
tions {/i} and {gi} respectively by (8). From Eqs.
(11), (12), and (8), it then follows that the func-
tions AL must have the property that they are
linear inf:

observer 0', which is equivalent to requiring that
the functions AL be continuous functions of the
functions {Ji}; Eq. (13) requires them to be linear.
It may be shown that the only continuous solutions
of the functional equation (13) for AL have the
form

AL {{fit (X) }) 2= Z Xi f, (X)

i=1
(14)

Thus, for fields described by n functions and
obeying the principle of superposition, the set of
functions must transform under Lorentz trans-
formations according to (14), that is, according
to some n-dimensional representation of the
Lorentz group. The physical requirement that the
functions A kI for fixed L and k be continuous
functions of thef's applies equally well to (8); that
is to say, this requirement is not related to the
superposition principle; hence if the system under
study is a nonlinear system so that the superposi-
tion of two solutions to (16) is not a solution, then
the set of functions that describe the system, if the
description is to be Lorentz invariant, need not
transform according to a representation of the
Lorentz group but instead according to some (non-
linear) realization of the Lorentz group. Unfor-
tunately, little is known about such systems, but
for us, the linear problems constitute our main
concern.

We here give a resum6 of the equations of type
(10) that we shall study. The first equation that will
occupy our attention in considerable detail will be
the Klein-Gordon equation. Let so'(x') = p (x)
obey the partial differential equation

V2 21 a2t(F-n2 =2

C2a2 h 2 (15)

= AL(ffi(x)}) +A({gi(X)}) . (13)

If in the function space of the set of all accepta-
ble vector functions ({ji}) a metric is introduced,
then the notion of the "nearness" of one function
{Jj} to another, say {gj}, may be given definitive-
ly, and continuity of functions on this function
space, such as the Ak, may be made precise also.
Without going into detail, it is intuitively clear
that if {fi} is near to {gi}, in some sense, for
observer 0, then {fi'} must be near to {g/'} for

Henceforth, we shall take h = c = I and use the
notation

[who = (72 - aa2>(

= aOtag, .

Then (15) reads

Er> - m2so = 0 .

(16)

(17)

We shall, in Chapter 2, study this equation in
considerable detail, showing how to extract from

4

Al (Ui (S) + gi (x) 1)



NRL REPORT 6028

a given solution of (17) the positive and negative
frequency parts, and how to construct the Green's
functions for the different boundary value prob-
lems associated with (17). In addition, we shall con-
sider not only (17), but the inhomogeneous Klein-
Gordon equation, and its Green's functions to-
gether with their associated boundary value
problems. For all these functions, we shall develop
several different and useful integral representa-
tions and also explicit representations in terms of
known functions; further their asymptotic be-
havior will be made explicit. Considerable atten-
tion to detail is given for the Klein-Gordon equa-
tion because a thorough understanding of the
work on that equation will greatly simplify the
calculations to follow.

In Chapter 3, we shall study the wave equation

[0y° = °, (18)

developing results analogous to those for the
Klein-Gordon equation described above; it will
become clear that the results of Chapter 2 will
carry over to Chapter 3 by simply putting m = 0
or taking the limit as m - 0. We shall then prove
that the results for (18) may be applied directly
to the wave equation for the four-potentials
{A,1(x) } of the electromagnetic field; in (18), the
function so is again a scalar, but in the equations
for AZ,

EIAA,(x) = 0. (19)

The {JA (x) } transform according to the vector
transformation law and obey the subsidiary con-
dition

,A-= ° *(20)
ax"

We shall show that the integral formulation of
(18) will carry over to (19) in spite of (20).

In Chapter 4, we shall consider the boundary
value problems analogous to those considered in
the two previous chapters for the Dirac equation

GAUSS' THEOREM; GREEN's THEOREM

Let Q be a (four-dimensional) volume in the
space-time continuum whose boundary is the
space-like hypersurface S. To each point of S, we
may associate a four-vector (no(x)) such that
np, = -1 and such that n,(x)8xM = 0 where
8x, is the gth component of an infinitesimal dis-
placement from the point x in the surface S.
The four-vector n will be called the normal to the
surface S at x; that the requirement n2 

= -1 may
be met is guaranteed by the condition that S be a
space-like hypersurface. It becomes geometrical-
ly clear that if S is space-like at x, then n is time-
like, so that nn, < 0; thus, n, may always be
normalized such that npn. =-1. If at x, S has the
tangent plane equal to xo = constant, then it is
clear that n = (±1, 0, 0, 0). We shall always select
that choice of sign for n such that it points in the
forward light-cone of the point x. Here in our
special case, n = (+1, 0, 0, 0). In addition to the
normal n (x) at the point x, we define the four-
vector n' (x) at the point x of S, calling it the out-
ward normal, in the following way: let Ax be a
displacement from x on S along the direction of
the normal at x, n (x). If the point x + 8x does not
belong to fl for any such 8x, then n'(x) = n(x),
by definition. If x + 8x belongs to the set fl, then
n'(x) = -n(x), by definition. It is clear from this
definition (and assuming fl contains no points of S)
that the outward normal points in the direction of
n when fl precedes the point x on S, i.e., whenever
any space-like hypersurface through fl precedes
x on S, and that n' (x) = -n(x) when the opposite
is true. The geometric interpretation is quite
clear and is best illustrated by Fig. 2.

Analogous to ordinary geometry, in four-space
we define the element of area on a surface as the
pseudovector dor- whose magnitude is that of the
area of the element and whose direction is the out-
ward normal n,:

dor,L = n'do- (22)

and, on a space-like surface,

dar -n d-,A, n2=-1.

where {y.,} are the Dirac matrices and +p(x) is a
four-component function which transforms under
a Lorentz transformation according to a certain
spinor representation of the Lorentz group, the
details of which will not concern us here.

If we introduce n4, it is related to no by*

n4 no/i .

*C. Moller, "The Theory of Relativity," Oxford, 1952, page 129.

(21) (23)

(24)

5
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xo We shall often take the space case Si = {xjxo =
const.}; then

f do-r,,f,= fdcrnif

= dd3 X.oifo
f

W(X)
X i

Figure 2

If f, is a four-vector, then, withf4 = ifoand x 4= iXO,

d afs Am af2 + af3 + afo ,
aX,. axI ax2  ax3  Oxo

aX1  ax2  aX3  aX4

If fl is a volume in space-time bounded by the
hypersurface S and fI, is a continuous differenti-
able function in fl and all pertinent integrals ex-
ist, then

= fd3xf o . (29)

Equation (29) tells us that do-o = -d 3 x; we shall
have frequent occasion to recall these results.
Suppose next that f, = s(x) adt - dq,ao; then

fd4x ( 4C0p- 0) =

f _fd(7,,,(P Wq, (P (30)
ax, axj

Si S 2

which is Green's identity. This may also be written

f d4 x[, (El - m2)lq - qj (Ei - m2),] =
(1

(31)fdo-(sO+a q7- I/a T)
f (S an' a n')
S

fd4x 'f' = f dc,, f, = f do- nV,,
a S S

(sum g = 1,2,3,4)

where a/an' = n',, a/ax, is the derivative along the
outward normal on S. Again, let S = Si U S2 as de-
fined above, and S, = {(x)Ixo = const.}; then

(26)

where d4 x = dxodxi dx 2 dx 3 . Equation (26) is a
statement of Gauss' theorem. We are especially
interested in the case S = SIUS2 ,* where S, and
S2 are space-like hypersurfaces and S, is later
than S2 ; in this case Eq. (26) becomes

f d4x d-= f dab fo-- do, t2 (27)
a S, f2

whrnow do-, is a four-vector always pointing
in the forward light-cone:

do-, = n, do- (A= 1,2,3,4 only). (28)

*SUS, stands for the set union of S, and S2.

do-, p a(x) _ =-d 3X s(x) -o
d axg J ax0

by (24). Thus, if we have an integral of the form
of the right side of (32), it may be given a covariant
generalization by replacing it by the left side of
(32).

In the formulation of Gauss' theorem and the
Green's identity, we required S° and ip to be con-
tinuous and twice differentiable; the continuity
requirement will now be dropped but the theorem
retained; this is done to admit as solutions the
generalized functions or the so-called distribu-
tions. Though distributions do not always possess
desirable continuity properties, they are infinite-
ly differentiable and always integrable; hence we
can utilize them in our identities.

(32)

6
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CHAPTER 2
THE KLEIN-GORDON EQUATION

THE HOMOGENEOUS
KLEIN-GORDON EQUATION

We shall consider, in this section, the boundary
value problem for a function <,o(x) which is a scalar
function under Lorentz transformations that are
proper and orthochronous and which satisfies the
homogeneous Klein-Gordon equation:

(L - m2) So(x) = 0. (1)

The pertinent boundary value problem is the
determination of the function ep at x in terms of
its values and the values of its derivatives on a
prescribed space-like surface. Prior to this, we
discuss the general solutions.

General Solutions; Positive and
Negative Frequency Parts

Using the standard technique of separation of
variables in a Cartesian coordinate system, we see
immediately that so(x) = exp ik x solves (1) if

or
k2 + M2 = 0

ko = ± co

(2)

(3)

where

co + VK2+m2.

In general, one may obtain a solution of (1) by a
superposition of such plane waves. Put

(p(x) = (27)1 fd4k a(k)e k. (4)

Applying the differential operator El - m 2 to both
sides of (4) and utilizing (1), a condition on a(k)
is seen to be

(k 2 + m2 ) a(k) = O. (5)

Now k2 + M2 = (-kIc2 + oj2 ), which vanishes for
those two values of k0 given by (3) but not other-
wise; therefore, in order that (5) be met for all
values of kc, a(k) must vanish when (3) is not

satisfied. This condition may be met if a(k)
vanishes identically; but then (4) vanishes identi-
cally also, and we have the trivial solution to (1).
Thus, if a(k) has the property

a(k) = 0, ko ±co

a(k) • O, k0 = co

and the integral over k0 of a(k) is nonvanishing,
(4) will acquire meaning. These conditions are met
by

a(k) = a(k) 5(k2 + i

= a(k) [8(ko-(t) +8(k 0 ±+w&)]

where a(k) is, as yet, undetermined. With
(4) becomes

p(x) = (21)4 d3k a(k i) ei(kr - xo)'P x) 2V)4 f 2wo

+ 1 - d3k ( k,-) ei(krw+Xo).(2ir)' 4j 2wo

(6)

(6),

(7)

We define the two functions

P(+) (x) =(27)J4 d3 k 2c, ei(k r -aixo) (8a)

- 1 a(k,-ow) i(k + X) (8b)(P(-) (x) =(r 4d
3k 2o e

We shall call sp(+) (x) the positive frequency part
of so(x) and so(-) (x) the negative frequency part
of so(x). The above discussion shows that any
general solution of the Klein-Gordon equation
in a given Lorentz frame may be decomposed
into its positive and negative frequency parts:

f (x) = 0 +) (x) + s(-) (x) . (9)

We shall now show that this decomposition is
invariant under proper orthochronous Lorentz
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transformations. Consider a given Fourier com-
ponent of p(x) characterized by the momentum
vector k; there are two terms in (7) affiliated with
this momentum vector, one whose exponential
part is characterized by the four-vector Ki =

(c, k) and the other by K2 = (-co, k). Now cI 'Ki =

K2,K2 =-M 2 < 0; thus each of these four-vectors is
a time-like vector, one (Ki) lying in the forward
light-cone and the other (K2) in the backward
light-cone of the origin in momentum-energy
four-space. Under proper orthochronous Lorentz
transformations Ki will transform into a four-
vector that lies within the forward light-cone
(see Chapter 1) and K2 into one which lies in the
backward light-cone. It is thus clear that if in a
second inertial frame the transformed function
,p'(x') is decomposed into its positive and negative
frequency parts p'(+) (x') and s'(-) (x'), and if

then
,I(±) (x') =-Lp() (x)

(10)

(1 1)

and the Lorentz invariance of the decomposition
(9) is established.

If, in Eq. (8b), -k replaces k as the integration
variable, Eqs. (8) may be written as

(12)

where
K = (CO, k).

A very useful method for extracting the posi-
tive and negative frequency part of any function
which shows clearly the invariant character of
the decomposition is due to Schwinger. To
develop this method, we first observe that

I (dT 11, a s> 0
27r i JT to, ax < o

P

where P is the contour in the complex T-plane
shown in Fig. 3.

Let n be a time-like four-vector pointing in the
forward light-cone; using (8) and (7) we see that

2 . P (X-Tn) = S°(+) ( (13)

UP

r- PLANE

Figure 3

and

1 If d sp (x + rn) = sp(-)(x).
p

The calculation is facilitated by the choice n=
(+1, 0, 0, 0. We shall utilize (13) quite often.

The Boundary Value Problems and the
Invariant A-Functions

THE INVARIANT FUNCTION A (X) AND ITS

ASSOCIATED BOUNDARY VALUE PROBLEM

Let S be an arbitrary space-like hypersurface
in the space-time continuum and let x be an arbi-
trary space-time point; x may precede S, lie on S,
or be preceded by S. The boundary value problem
we strive to solve here is the determination of the
value of so at x when so and qo/l8x, (y,=0,1,2,3)
are known at each point of S. (This may seem im-
possible for that case where x precedes S, because
it would appear that we wish to determine the
amplitude of the field at a given point in space
and at a given time by its values (or events) that
occur in the future, which is a violation of our
intuitive notions of causality; but it must be point-
ed out that the Klein-Gordon equation does not
contain in it anything that precludes such cases of
boundary value problems. Said in another way,
causality, however formulated, is a physical re-
quirement imposed on those fields up of interest
quite distinctly from the mere solving of the equa-
tion, which is our purpose here. We shall discuss
cases later that meet some of our intuitive notions
of causal relations.)

- - v - F

8

S°'(x') = L~p (x),

�0( ±)(x) = I d3k a (_t K) e ±iK-X
(2-ir) I f 2co
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X0

For the present discussion, assume x does not
lie on S, let S', be a surface that is space-like and
such that x lies on S', and let S and S' coincide
everywhere except in the region of finite diameter;
let 1 be the four-volume enclosed between S and
S' (see Fig. 4, which shows x later than S, although
the relations could as well be reversed).

Assuming so (x) and qp (x) both satisfy the Klein-
Gordon equation for all x, Green's identity, Eq.
(30) of Chapter 1, reduces to

ax,;epx) ( ( ax,,
sus,

(14)

and because the volume integral vanishes for any
fl due to the assumption that so and ip solve the
Klein-Gordon equation, (14) is independent of S
and S'. Another way of writing Eq. (14) is

_ I - (x ) ]ax,
SI

S

do-A'4I q(X') p(x') - (x') aq3J,(x')
11 14 (15)

We shall impose conditions on S', S, and qI in
order to assist our evaluation of so at x on S. Since
(15) is independent of S' and S, choose S' to be the
hyperplane x0 = xo and S to be any space-like hy-
persurface preceding S or after it, but otherwise

I fdu[E(X ) aqp(X') - P (X') a (X')]. (18)

S

Equation (18) involves integrals over two
surfaces still; we wish to reduce it to only that
integral over the surface S, which means we
want the integral

J d3xi t(x') at X)

to vanish; this will be so if 4i(x') - 0 on S'. This
requirement may be made more general by
noting that if we want (18) to be Lorentz in-
variant as it actually is, then qj(x') must vanish
outside the light-cone of the point x. We see that
this requirement is consistent with the above,
because under a Lorentz transformation the sur-
face xo' = x transforms into a hyperplane that is
space-like and goes through x.

Characterizing the function tp(x') by x as well,
the requirements we have placed on 'p are

t (x' ) = 0, for (x' - x) 2 > 0

aq.(x-) =-_ (r - r), x'o = XO.
dxo

(19a)

(19b)

If such a function tpx(x') exists, then

So-,' [g(X ) , (X ) ax' ]-(20)
s

meeting the requirements that fl be finite. Then
the left side of (15) becomes

- d3x [p(x') aq(x') - W(x') ap(x')] (16)

x'o.r

We shall require of aqi(x')/1xo that it be a three-
X dimensional delta function, - (r'-r):

8+j(X') ==- (r -r'). (17)

Then (15) reduces to

f0 (x =- d3XjI '(xI) 2X' )
xe =X,:axo

Figure 4

9
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We shall see that tp,(x') does not exist as an
ordinary function, but as a distribution instead.
To this end, we decompose 4Ix(x') into its positive
and negative frequency parts just as we did the
general solution in the preceding section:

= 3_ _ d(k, co:x) k-,-ox)

1 3 d(k,-c:x) ei(kr'+WX')+ 1 Jdk ( )ei 0kr+X
(27r) 4 2w

(21)

Impose on (21) the condition (19a) on qkx(x') in
the form that Orx(x') vanish on x'o = xo; then be-
cause the Fourier transform of zero vanishes,
we get from (21) and (19a)

d(k,w;x) =-d(k,w;x) e-2iCxo (22)

We have thus solved the boundary value
problem posed:

p =(x) - dolL [A(x' -x) '-;
S

=fd axIL

S

-<'(x') 8ax, -x)

=I do-, A (x -x' ) adf

-f (x') 8A (x-x )] (25)

where

(2i)- 1 fd3kezkr sin coxo

and (21) and (22) combine to yield

x' (x ') = - (2 ) f d3k d(k,at;x) e-izxo+ikt X x

sin co (xo'-xo) (23)
co

Applying condition (19b) to (23) in order to deter-
mine d(k,co;x), we get

x =-(2 r)3 fd3keik (r'r-) x

sin to (xo' o) (24)

From (24), it is immediately evident that Aix(x')
is invariant under translations; hence we may
write it as A (x' - x). It is not evidently invariant
under more general proper orthochronous
Lorentz transformations, although this will be
established shortly. It is evident that the integral
does not exist in the usual sense, since d3k/w -

kdkdfl; hence A(x' - x) must exist in the sense of
a distribution (i.e., it may be regarded as a linear
functional on the linear space of the solutions of
the Klein-Gordon equation.)

o = + Vik2 + rn2 (26)

and it can be readily seen that (25) reduces to an
identity when S is chosen as x0 = xo. The A-
function with the special value m = 0 was first
introduced by Jordan and Pauli.*

Expression (26) for A(x) is an integral repre-
sentation of this function. There are several
others that are useful and important. Observe that

sin wxo 1 e- MOX0=- 2 dko 2+m
Ct) 2~7rJf k2+ M2

C
(27)

where the contour C in the ko -plane is shown in
Fig. 5. With (27) and (26), we obtain a second
integral representation of A(x):

J1eik x1 J d4 k ek
A(x) = (2ir)4  k2 + m2

c

(28)

To get a third, define

t+ 1, if ko > 0

,E (k) = 0, if ko= 0
- 1, if ko < 0

(29)

*P. Jordan and W. Pauli, Z. Phys. 41:151 (1928)

10
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er, the Jacobian is unity, and because it is ortho-
chronous, E (k') will have the same value as e(k)

because it is a Lorentz transformation, k' 2 = k2

hence

A (x) =-(2Or)f fd4k' eik' x E(k') 5(k'2 + M2)

=- -(
2 T)3 fd4k eikxZ E(k) 5(k 2 + m2)

or

A(x') = A(x) .

The following properties obtain,
shown from (26), (28), and (30):

as is readily

and note that A(x)* = A(x)

sin .wxo eixo -e-icxo
CE) 2&oi

A (-r,xo) = A (r,xo)

A( r,-xo) = -A(r,xo)

- I dko e-ikoxo [8(ko + w) - 8(ko -) ]

=.1 f dko E(k)e-ikoxo

r8(ko + co) + 8(ko-w))1
I 2co .

= i J dko) e(k) e-ikoxo ,8(k2 + m2).

Then

A(x) =- ' f &kd4 k ezkx E(k) 5(k2 +in2) (30)

The invariance of A(x) under proper ortho-
chronous Lorentz transformations, is now easy
to prove; if x, = axxx, then

A (x') =

- (2-)S d4k eikgauXXX E(k) C(k2 + M2 )

Make a change of integration variable from k,.
to kI = a,IxkM. Because the transformation is prop-

A(-x)=-A(x) (31)

i.e., A (x) is real, an even function of its space co-
ordinates, and odd in its time coordinate. An
explicit representation of A (x) in terms of better
known functions will be derived in a later sub-
section.

THE INVARIANT FUNCTIONS A(+) (x) AND A(-) (x)

AND THEIR ASSOCIATE BOUNDARY

VALUE PROBLEMS

We have seen, from Eq. (25), that the values of
so at x may be determined by the values of sp(x)
and ps,(x) on some space-like surface S. Know-
ing so (x) over all space, we may construct by direct
computation or by Schwinger's method, the posi-
tive and negative frequence parts. Hence, one
should be able to determine these functions direct-
ly in terms of so and soy on S. This is now quite
straightforward; from (25)

so(x Trn) =- do'
S

[A(x' rn-x) axt

-9(X ) (x' ± rn - x)].

A
ko- PLANE

Reok

Figure 5

| @ l l @ - ^
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Performing the obvious integral to be done, ac-
cording to Schwinger's prescription, we get

p(±) (x) =- do-,[A( )(x' - x) asp,
S

-O ) (x -x)] (32)axI

where

( -x) = J f I (x' +n - x). (33)
P

If we choose the second form of Eq. 25, i.e.,

p(x) + fdo-Al A(x-xD) a
S

di) (x-')

then using Schwinger's integral again,

p(+) (x) = + j do-L [A (x - x') ax

S

a A (t)x ) $()] (35)
axIA

The physical interpretation of Eq. (35) is rela-
tively straightforward, if we be lax in our ter-

minology. The functions A(+) and A(-) determine
directly the positive and negative frequency
parts, respectively, of 9p at x in terms of the
values of (p and (PI on S. Eq. (35) rather than
Eq. (32), will be the final form of the bound-
ary value problems solved by A(+) and A(-).
Comparing (35) and (32), we see

(36)

which also obtains from (31). From the defini-
tion of positive and negative frequency parts,
we have immediately

A(+) (x) = i A (x -n)
P

I Ik d.
- d3k co S1 i -sin cw(xo-7)

where we have taken n= (1,0,0,0); this immediate-
ly yields

i i(krw-CX0 )
A(i) ( 2=r)3 f d3 k e 2 )

() (2o7r) 3 J2co (38)

and (38) and (36) together yield

A(-)(x = (* f d3k e i(kr+.X)
i\~(x)2^)3 2 d &k (39)

A second integral representation for these
functions analogous to the second integral
representation for l\(x) as given by Eq. (28)
is obtained in the manner that Eq. (28) was
obtained:

e-i xO 1 e -ik 0x

2o 2+1 jdko (k +co) (ko - w)

1 f e-ikoxo

- 2,7 .ij dko k2 + n2  (40)
c+

where C+ is shown in Fig. 6; also

e+iwxo 1

2wo 27ri

e-ikoXo
dko (ko + co) (ko-wc)

1 f eikoxo

= + ~ dko k2 + M
2

C-
(41)

where C- is also shown in Fig. 6.
Applying (40) and (41) to (38) and (39) respec-

tively, one obtains

A(x) = A(+)(x) + A(-)(x).

Let us compute the integral representations of
A(+)(x) and A(-)(x):

1 C etk x
A(+) (X) = I d4 keix

(27r) 4 
J k 2 + M2

c+

(37)

(42)

12

A(±) (X' - X) = - '& CO (x - X')
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Imko

C-

ko- PL A NE

Re ko

Figure 6

1 r eikxl&)( (2 )4 J d4 k2 + m2  (43)

For a third integral representation, we use

e-i 1 + dko e-ikoxo a(ko - )
2w 2yfdk

+x0

=2 f dko e-ikoxo 0(k) [ (ko -)

+ 8(ko + co)]
+x4

= f dkco e-ik0oo 0(k)6(k2 + in2) (44)

where

IXO > O0

0(x) =- 1/2, xo = O =- 0(xo).

Lo, xO < OJ

+x0

A(+) ) = - I d4k eik X0(k),(k 2 + M2
)

(47)

+x0

AF() (x ) = (2) s Jd4k eikxo (k)8(k2 + M2)

(48)

and it follows directly from (47) and (48) that

A(+) W * = W(-)(x) .(49)

Also, (47) and (48) exhibit the Lorentz invariance
of these functions.

THE INVARIANT FUNCTION A(1)(x) AND ITS
ASSOCIATED BOUNDARY VALUE PROBLEM

Define the function A(1)(x) by

\mW = (2,7) 1fd3k ezkr cos CO (50)

It is clear that A(M)(x) solves the Klein-Gordon
equation. This function may be related to the
function A (x) symbolically by

Am' (x = - a0 =A(x) (51)
( -a + m2

where the symbolic operation-ao 0 /V\/- a + M2 is

interpreted to mean, first, express A(x) (or any
function the operation is applied to) in terms of a
Fourier integral and, second apply the operation
to each component; thus

(45)

- a0  a(x) = 1 1
-a + m2 (27r) 3 JV \a2 + M2

In a similar way,
+x0

ei.OX0 -i.o ( k 8(2_r 22Oo = f dko e- koo0(-k)t(k 2 + 2) .(46)

Using (38) and (39) with (44) and (40) respectively,
we get

' kr a sin cxxo
ax0 dc

(2,7T)3 f d W zrcsw 0

X

I I * I o

13
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Suppose -(x) and ad/ax, are known on S; let
us compute the function

f do-, [A(1 (x -x' ) dag -f (x' )
S

, (x' ) da(AM (x - Xt) ]- (X) .

Here sp(x) may be any function whatsoever; now,
with (51),

(a (X)= dco4A(x-x') f
-a2± M

2  ax'

-- ( ) aA (X- X')]~OaxA,
Suppose so(x) is So(+)(x), the positive frequency
part of so(x), where sp(x) solves the Klein-Gordon
equation and so and a,,, are known on S; the posi-
tive frequency part propagates independently of
the negative frequency part. To see this, suppose

(x) = p(+)(x) with the negative frequency part
identically vanishing for all x; then,

9(+)(= f do-, [A(x - x') a)x
S

-wP(+) W) dA (x d ].

Analogously, if (p(x) = Sp(-) (x) with o(+) (x) 0,
then

f x W( ) ax,
S

( ) aA (x x')]

Now any function So(x) may be decomposed thus-
ly. Hence we have

f do-A(1)(x-x')d(+)(x')
S

-(X') aM( (x- X')]

But

a0  a0  1

A/-a+ m2 'P i(x) - (2'7r)4

d3 k a(k,- )ei(krowx)
2co

=(2r)4 fd3k a(k, 2 ) (+TZ) ei(k-r +;w)

=- o(-)(±) W

Thus,

f ,AIl- ) ax,
S

(52)

The functions A(l)(x) will "propagate" the posi-
tive and negative frequency parts of so and aP/ax,
from S to the point x but with a change in phase,
in contrast to A (x - x').

Next, we develop integral representations for
A(l)(x). Expanding cos wxo in terms of exponen-
tial

+x0

COS OXo = dko 8 (k2 + M2) e-ikoxo (53)

we get immediately from (50)

+x0

id4 k 8(k2 + m 2) eik- (54)
(2) J-x

14

I aA(l)(x-Xl)-9(±) (X ) � a�-X, -i�p(±)(X) .
A I =
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Utilizing (40) and (41) we get also

cos(XO 1 f
2co -27ri J

c_

e-ikoxo
dko k2 + 2

e-ikoxo
- 1 f dko k2 + M2'

c+

Let C+ be the contour C+ traversed in the oppo-
site sense and let C1) = C-UC'; then

iA(') (x) = (2I)4
c27 l)

Two equivalent
Fig. 7.

eik x
d4 k k2 + m2 '

contours C(1) are displayed in

Imko

It is seen from (56) and (57) that A and A(')
play roles analogous to cos x and sin x functions,
while A(+) and A(-) play roles analogous to the
exponential functions exp (-ix) and exp (+ix),
respectively.

EXPLICIT REPRESENTATIONS OF THE

INVARIANT DELTA FUNCTIONS

In this section, we shall evaluate the integrals
for A(+)(x) and A(-)(x) in terms of the higher
transcendental functions and thereby obtain
explicit representations not only for A(+) and
A(-), but, through (56), also for A and a(').

In the integral representation (38), we trans-
form from Cartesian coordinates in k-space to
polar coordinates in k-space wherein the kr-axis
is made parallel to the vector r. It is an easy mat-
ter to show that (38) reduces to

A(+) (x) = a dk eA87r2r r j C
(58)

where we place IrI = r. Put k = m sinh /3; then
dk = m cosh ,3 d:3 and c = m cosh A, and (58) may
be rewritten as

i1(+) (X) =4 d L(+) (rxo) (59)

where

L(+) (r,xo) = f d/ exp [-im (r sinh 8
-00RELATIONS AMONG THE INVARIANT A-FUNCTIONS

That the functions A(x), A(+) (x), A(-) (x),
and A(1 ) (x) are all invariant under proper
orthochronous Lorentz transformations is evident
from their integral representations involving
integrations over the whole of the k-space; that
they are not all independent of one another is
evident from the integral representation over
contours, if it were not evident before. The
following relations are easy to verify:

A (x) = A (x) + A(-) (x)

iA(x) = A(-) (x) - A(+) (x) I
A(+) (x) = [A (x) - iA(1) (x)]/21

A(-) (x) = [A(x) + iA(1 ) (x)]/2J

(56)

(57)

+ xo cosh B) ] . (60)

From the fact that A(-) (x) = l( (x) *, we have

A(-) (X) = I a L(-) (rxo)
(61)

L(-) (r,xo) = L(+) (r,xo)*

We cannot derive all the pertinent results for
all values of (rxo) with one development; instead
we must consider certain regions of space-time
separately. These are labeled in Fig. 8.

Region 1

Since
r < _ _______

ko - PLANE

I I Reko

Figure 7
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xO

REGION 1I E I O N I:

.I

REGION 2\

X \\ \ IV

m V XW_ - = C
I -

.X0 >0 ,
__X02+ r2<0J /,' I- , REGION 2:

V r

/ REGION 3:

" \I Xo2+ r2> O

where, in general, 4 may assume complex values
whose real and imaginary parts we shall designate
by g and X respectively. Thus L(+)(r,xo) may be
regarded as the boundary value of

g Jd) e-ij4-h/3, X < 0.
-xr

(64)

From the theory of the Hankel functiont, we have

+x:

Ho' ) (z) = I do e r ,sh Im z > 0
-xi

(65)

Figure 8

there exists a real /o such that

sinh - r

Xocosh /3° - Vx

Then

r sinh ,B + xo cosh ,B =\/Y 2  cosh (,B + Po)

and
+t0

L(+)(r,xo ) = 2-J- f d/ e-imcx 1-r 2 co)sh(#+/0)

+c

Id/ rimV -rX2 cola= 2r J dj e- m'"sh'- (62)

We note that L(+)(r,xo) does not converge in
the usual sense; however, since cosh /3 is always
positive, if X = V-Z? is regarded as a complex
variable and X assumes complex values with neg-
ative imaginary part, then L(+){X} converges off
the real X axis and below it. We may thus regard
L(+)(r,xo) as the boundary value of what is clearly
an.analytic function of XA.* Instead of the param-
eter X, we put

*This result is a special case of a very general result derived by
Wightrann (Phys. Rev. 101:860 (1956). In this paper of Wightmann
lies the foundation of a deep study of field theory on an axiomatic basis
in which the A-function properties above come about in a very logical
way, along with other important functions.

+0I

H0 l2) (z) =- f d:3 e-izosll, Im z < 0. (66)

Thus, by analytic continuation,

L(+)(r,xo) = + 1/2 H2 (m V7 1T7
0 ,region 1.

L&)(r,xo) =+ 1/2 Hd)(m \/xo2-r2) (67)

The second of Eqs. (67) follows from the fact
that HI(x)X = HA (2)(X) when x and X are real.

Region 2

Here, r > xo, so we cannot put r =X-
sinh 13o and x = -T 2xo2 sinh jPo; instead we put

= cosh/3o

xo ==sinh/So

\/r2+ Xo2

Then

m(r sinh ,B + xo cosh /3) =

mV/r \/ sinh (/3 + Po)

Thus, in region 2,

tSee Courant and Hilbert, "Methods of Mathematical Physics,"
Interscience, New York, 1953, esp. Chapter VII, Vol. 1.
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+x 0

L(+)(r,xo) = f | df e-i-mr2 - x- sinh l
- (68)

L(-)(r,xo) = - L(+)(r,xo)

In Eq. (68), replace i sinh f8 by its equivalent cosh
(,3 + i(7r/2) and thenlet y = ,3 + i(7r/2) ; then

+xo+i( or/2)
L(+)(r,xo) = i I r

2,7r f

L(+)(r,xo) = - 1/2 Ho0 M' (m V =X -)'

, region 4.
LD-)(r,xo) =-1/2 Ho (2)(m \/JX frgin40 (74)
We may combine the results (67) and (70) and
(71) to get a representation of L(+) and LD-) in
the union of regions 1 and 2 (with the light-cone
'itself omitted):

dy e-m1 r2 - x2olxsh y

-x+i( 7r12)

In the step between Imy = 0 and Imy= 7r=2,
integrand in (69) has no poles, and it is e~
seen that the countour integration above is I
equivalent to an integration on the real y-/

+00

L(+)(r,xo) = 21 f dy e-mr 2 - x0 coshy

.+00

= dy ei(imlrs - X ) cosh y

or, using analytic continuation again,

L(+)(r,xo) =-1/2Ho(')(imV r2 - x- 2)

while ., regii

L-) (r,xo) = + 1/2 Ho (1) (im x

From (38) and (39), it follows that

A(+) (_x, r) =- A(-)(xo, r),

A(-) (- Xo, r) = -A(+)(xo , r)J

(6)L(+) (rsxo) =2-{ 0 (-X2) 4(2) ( mV 2)(69) 2 rxo

the -1

asily - 0(x2)Ho(1)(m\7i) I
hen -

L(-)(r,xo) =-2 g~o) (MV/=2) J

(70)

in 2.

(71)

(72)

from which it immediately obtains that

L(+)(r,xo) = - 1/2 HO(j)(im Xi )
' region 3

L(-)(r,xo.) = + 1/2 Ho0M' (im \/7-)J (73)

(75)*

(Region 1U2)

and we may combine (73) and (74):

L(+)(r,xo) = - HMI)(mV)x)

L(-)(r,xo) = -2 X {6( 2x2)H2( m\ N/ I (76)
0 (X2 )Ho(1) (Tnm X)}

(Region 3 U 4)

From (75) and (76), we get

A() 4#7rr '~ {f(X)[L( )(r,xo)+L(-)(r,xo) ]}

1 a r
= ex 4' a I a(-X2) x

47rr ar I

r Ho(2)(m\/ X2)+Ho(l)(m\X2) I
L ~2 J

= -x vr -ar{ -x)om }
(77)

*O(x2) is the step function fl(a) = 0 for a < 0, 0(o) = 1/2, and T(a)
1 for a > 0; this is defined when a is a number. Contrast this with O(x)

where x is a four-vector; we see 6(x) = T(xs). In a similar manner we
define E(ae). See Equation (45).

17
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Using the fact that

I ap(x 2 ) 2 aS°(X2)
r Or ar2

-- 3,d (X2)
a(-x 2),

when this operator operates on these functions of
(-x 2) we get finally

l\(x) =---- 8(X2)

- m2 (-x2) J(m I 1. (78)
2 m V ?7 iI

Equation (78) applies everywhere including the
light-cone: the derivative operation implied in
(77) could not be performed for all points x in
classical function theory; but o(-x2)Jo(m\/X2)

exists as a regular generalized function and there-
fore possesses a derivative which, as (78) shows,
is also a generalized function. From (78), it is
manifest that A (x) vanishes outside the light-cone,
and for xo = 0 (from the definition of E(x)). It
is a delightful exercise to verify directly from
(78) that A(x) satisfies the Klein-Gordon equation,
and that

aXO Xo = 0

Turning to the function A(M)(x), we see from
Eq. (50) that

A() (-xo, r) = A() (xo, r) (79)

so that it will only be necessary to obtain a repre-
sentation of A1M for regions 1 and 2 and then it
will be known for the whole of space-time. From
(56)

AP() (X) =I4 ad [ -) (r,xo) -L(+) (r,xo)]

- 1 I [1 + 62(x2) H )(m1 ) H 22) HO(2)(mV)

= 1 d [ (X2)HOl) (mVf/=) -2(_X2)Ho X2

47rr Or l2

x2 < 0

x 2 > 0

X2 < 0

X2 > 0

or

A( 1(x) =

m2 N i(mV2)
4'7r mug7- '

m2 Ki (mV/)
27r m V

(X2 < 0)

(X2 > 0)

(80)

18
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From (80) it is quite clear that A(l)(x) does not
vanish identically outside the light-cone. The
functions No and N. in (80) are the Neumann
functions of order zero and unity respectively,
while Ko(z) is given by

Ko W) = - ~HoM (Z)

For explicit representations of A(+)(x) and
A(-)(x), one may use Eq. (57) together with
(78) and (80):

E(X)8(X 2 ) nM2 H, 2 ) (mVX)

2ir 4qr my/

X2 <0, XO > 0

E(X) 8 (x2) M 2 HI( )(mN/1 1 x)
AW()= 21r 4 ,7r M yVT7

X2 <0,Xo<0 (81)

E(X) 5 (x2 ) im2 K1 (mVy

2 7T 27.2 m\/'

where y is the Euler-Mascheroni constant. Thus

A_)x- _E(X) {_x2 M~~2 ) -
a( X2) - 0 (8x2 ) + ...

(83)

() ) - , + 42 In 2
AmW IX2

_0 2ir2 X2 4,7r2 fl 2

(84)

Thus A (x) has a singularity of the light-cone
with an additional jump discontinuity; AMl) is
likewise singular at the light-cone, but the singu-
larity is much stronger than that of A (x).

For large values of JzI,

2
J1z) cosz

2Ni(z) sinv z

2
K, (z) ~-~e-Z

Thus, inside the light-cone

and

A(-)(x) = A(+) *- (82)

The behavior of A(x) and Ai()(x) near the light-
cone (X2 - 0) and large distances away from it
(x

2 - + -o) and may be derived from the behavior
of the function J (z), N (z) , and Ki (z) for
Izi - ± -° respectively.t Near the origin

J1 WZ Z 2 + ° (Z3)
2

Ni (z) + n 2 + )z- z +
irz 7w 2 7r 27 ..

1 z z/1DIKi(z) -+-In -+Iy--±.22 2 2+ 2

tCourant and Hilbert, loc. cit.

A (X) E(X) cos m y -X2 - + 00
27i3I2((m\/ )3/2

Aml)(X W m2 sin m/x -x2 - + °°
217T3I2(m y '2.)312' -

while outside the light-cone,

A(x) = 0, X2 - +0

m2  
X

2 
- +00.

21/27T5/2 ( mN/) 3/2'

The Boundary Value Problems and the
Invariant A-Functions (Continued)

In the preceding section, we discussed the
solution of several boundary value problems for

x 2 > 0

(85)

(86)

(87)

(88)

19
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the Klein-Gordon equation which gave rise to
four important Green's functions, all of which
solved the homogeneous Klein-Gordon equation
themselves. In this section, we solve several
more boundary value problems which give rise
to Green's functions different from those pre-
viously studied and which satisfy not the homo-
geneous Klein-Gordon equation, but a special
version of the inhomogeneous Klein-Gordon
equation, that is, Eq. (1) wherein the right side,
rather than vanishing, is a prescribed function of
space and time.

THE RETARDED A-FUNCTION, AR(X)

Consider a physical experiment wherein the
experimenter sets up his field function S° at the
time t = to in such a way that the functional values
of (p and all its first derivatives are known through-
out all three-dimensional space at time t = to.
Since the values of so and its derivatives at previous
times are immaterial, we may require that these
vanish. Since the function so develops in space and
time according to the Klein-Gordon equation, we
may expect to be able to compute the values of so
at any later point in space and at any time. We
wish to construct an auxiliary function which we
shall call the retarded A-function and shall
designate by AR to describe this situation, that
is, a function which, when used in conjunction with
Green's identity, will yield p(x) when x is later
than the surface S(to) and zero when x is earlier
than the surface S(to). Let us try to develop this
function in a manner parallel to that used in the
preceding section.

Consider first the case x later than S(to); let
Si be a space-like surface through x such that Si
is tangent to the plane x0 = xo at x (Fig. 9), and
that the volume fl interior to the union of these
two surfaces is finite. From the first two subsections
of the preceding section, the value of p at x is
given by

9(X) = f do- A A(x-X') a-
S(to)

- w(x ) (dx - ) ]

X o

S(X =Xs)

X i

Figure 9

Thus, if

S2-

X

AR(X -X') = A(X-X'), Xo > Xo' (89)

we shall have achieved part of our goal.
Now suppose x lies earlier than S(to). Construct

S2 through x in a manner analogous to the con-
struction of S1 (Fig. 9).

Let us assume again (as was tacitly done in (89))
that AR obeys the Klein-Gordon equation:

(L - M2 ) AR(X) = 0, for x E Qs,,s(to). (90)

Then in the Green's identity, the volume integral
vanishes as before and we are left with

f do [Z (x') DAR(X - X') - AR(X - X') ad- ]
ax~ ax,

S2

f da; [ (X,) aR (x X) - AR (X - ,') aof

S(tW)

(91)

But our boundary conditions of p stated op = 0
for all x prior to S(to); hence (p(x') 0 = adp/axpI
on S2. Thus,

aAR(x-X') ap =
f do4 I f (x') aA ,) -AR (x-x') a '

s(to)

which can be satisfied only if

20
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AR(X - X') = 0, Xo < Xo'. (92) lim A(x) adaao(X) = 8(xo) xm A(xor)
xo-*O X0

Thus, if we choose AR(x) for all x to be

ARR(X) = 0(x)A(x), all x, (93) = 8(xo) d (xo,r)(93) axo
a form which exhibits invariance under proper
orthochronous Lorentz transformation, then the
boundary value problem posed in the beginning
of this section will be solved. While it is true that
AR satisfies the Klein-Gordon equation in fl(S1 ,
S (to) ) and Q (S2 ,S(to) ) (the latter by virtue of (92)),
AR does not satisfy the Klein-Gordon equation
everywhere. (Note that AR as given by (93) is an
extension of AR outside the original domains fl of
definition.) Let us determine what equation AR
does satisfy in its extended domain. It is easy to
show

adaAR(X) = A(x) a,±a(x) + 0(x) dadA(x)

=-8(xo)8(r)

=-8(x)

where 8(x) = 8(xo)8(x1)8(x2)8(x 3).
vanishes elsewhere, we have

Since AnIO

A(x) aaO0(x) = - 8(x)

and similarly

Thus
+ 2 a,0M(x) aA(x).

a,6(x) = O. if ).= 1,2,3

do0(x) = 8 (xo) .

2 a,, (x) aA (x) = + 2 8 (x).

OAR(X) = 0(X) DAA(X) + 8(X)

and utilizing the fact that A(x) obeys the homo-
geneous Klein-Gordon equation, we get

(l - m 2 ) AR (X) = 8 (X); (94)

Therefore

a~aMo (X) = aoa~o (X)

= a8 (Xo)
ax0

8 (Xo)

XO

that is, the invariant function AR(X) satisfies the
inhomogeneous Klein-Gordon equation. With
this fact, we may recast our treatment of the
boundary value problem of this section in a
manner different from above and in a way that,
as we shall see, cannot possibly be applied to our
previous A-functions.

Let Q be a finite volume in space-time bounded
by two space-like hypersurfaces Si and S2, where
Si is later than S2. Let x be any point interior to
Q. i.e., xE fl but x # SlUS2. We shall try to find an
auxiliary function qP,(x') that satisfies

Therefore

(OII' - m2) q.(x') = 8(x' - x) (95)

A (x) ado (x) = 8 (xo) A (xo, r)

At the point x0 = 0, A(x)L10(x) is undefined; we
shall define it by a limiting process; therefore

and will solve the boundary value problem stated
above; namely, the value of so at x is determined
solely by its values of S2 alone. We shall use
Green's identity in the form of Eq. (29) of Chap-
ter 1:

Now
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fd4x'[ p(x') (l' - m 2)qIi (x')

-Xqi(X') (E' - m2)p(x')]

- f do[p(x') an,(x -(x aO,')
s, Us2

(96)

Using (95), the fact that S1 is by hypothesis to
make no contribution, we get, when x eQ.

(x = I (X an'
S

2

- +- (X ) an/ I -

To assist us in casting the right side in the

f do,,,

form, assume, for the moment, S2 is the hyper-
plane xO = constant; then do- = dxidx2 dx3 = d3x=
do-o and

a a
an' axo

ant. When x # Q., the left side of (96) vanishes and

0 = fdo-' [ q.(X') "P (XI -(X ) aqj- XI -
S

2

(98)

Comparing (97) with (34), we get

(99)

Since Si is arbitrary for this boundary value prob-
lem, (99) implies

all x later than S2. (100)Eqt (xi) = A (x8 i i) ,

Equation (98) implies

s (x') = 0, all x earlier than S2 . (101)

Since A (x - x') vanishes outside the light-cone,
(100) and (101) may be combined into

x(x') = 0(x - x') A (x - x') (102)

so that tP.(x') is identical with AR(X - X'). It
remains to show that qjix(X') solves (95):

= (a'-m 2 ) AR(X-X ' )

p(x) = - Jdo-[jo (X') axa (6 )
S 2

= [(-as) (-a.) -Im2] AR(X-X')

= (El-rM2 ) AR (X-X')
- Il,(X') a (x' )

= 8(x - x')

JdcrIL[ (X) ax,
S

2

- IlX(X') a((x') ] 97)

We have indicated all the steps in detail so that the
signatures of various terms have their origins
clearly delineated. Equation (97) is clearly covari-

where the last step follows from (94).
This method differs from the first method in two

ways: first, we required the function tA,,(x') to
solve the inhomogeneous Klein-Gordon Eq. (94)
at the very outset, whereas in the first method,
this was derived; second, the point x was not re-
quired to lie on the upper or lower surface as in
the first method.

We conclude this subsection by noting that we
shall derive integral representations for AR (X)

Then

22
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in a later subsection, and by summarizing the
boundary value problem in the formula

|do- A[R (X-X ') a f (X )
S

aAR(X -X) ] ( c(x) , x later than S
(axX Idax 0, x earlier than S.

(103)

THE ADVANCED A-Function, AA (x)

Let us examine the above boundary value prob-
lem as it appears in a reference frame 0 which is
the inversion of the reference frame in which the
boundary value problem of the preceding sub-
section was formulated; i.e., if P is a point of
space-time whose coordinates in the above refer-
ence frame, called 0, are xo, xI, X2, xX, then in
0 the coordinates are xo, XI, X2, x3 ,where =

-h. The surface S goes into S and

Sl

do;r -1>f dUN.

Transforming (103) we get

f A I -- +-')
iS

C'p~) 8R- -a-,)

= I Y) earlier than S

o , x later than S.

Denoting a(-x') by y(x'), the last equation reads

f
iS

d&I AR (-X-+-X') d )a-) ax_-, )]

O x later than S

-O(X) x earlier than S.
(104)

The function so(x) satisfies the Klein-Gordon
equation

(aaM') (p (X) = O.

Thus (104) represents the solution of a new
boundary value problem in the reference frame
of 0; had we solved the boundary value problem
in the preceding subsection in O's reference frame
and then transformed to the reference frame 0,
we would have derived (104) within the bars
appearing there. Thus, we define

AA(X) = AR(-X)

which solves the boundary value
marized by

(105)

problem sum-

J do_ [ A, (X-X,) aP(X _ ) (X) aAA(X MX) I
ax x

= r , x later than S
|-y(x), x earlier than S. (106)

Utilizing (93) and the property that A(x) is an
odd function in x, we have

AA(X) = -(-x) A(X).

Integral representations for AA (X)
developed in a subsequent subsection.

THE INVARIANT FUNCTION A(X)

Define the function A(x) by

A (x) = 1/2 [ AR (X) + A A(X) ].

(107)

will be

(108)

It follows immediately that

A (x) = 1/2 E(x) A (x)

and

f do [ A(x -X') 8f --(X ) Z t-x x)
S

{ -y (x), x earlier than S

yp(x), x later than S

(109)

I

(110)
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and that J do; [ AF(x - x') t9(XM - P W) aAF(X - X') ]
( - m 2) A (x) = 8 (x). (111)

A subsequent subsection will give integral repre-
sentations of A(x).

THE FEYNMAN, OR CAUSAL, PROPAGATOR, AF(X)

We seek to construct the Green's function which
will yield from the values of (p and a<(ax,) on
some space-like surface S the positive frequency
part of (p at the point x when S precedes x. We
could develop this boundary value problem as we
did before directly from Green's identity, but
this is not necessary, for we have enough devel-
oped with the functions A(+) and A(-) or A to ease
our path. For our purpose, we shall take (35)
as our starting point and observe that the Green's
function we want, which we label AF (X), is given by

- f A(+)(x), if xo > 1

l -A(-)(x), if Xo<0 ( 12)

where for simplicity, we have taken S to be the
hypersurface xo' = 0. Equation (112) may be cast
into a form explicitly covariant by use of the
0-function and thereby broaden its applicability
to all space-like hypersurfaces:

AF(X) = 0(X) A(+)(X) - o(-X) A )(X) . (1 13)

This function was introduced by Feynman in
his theory of quantum electrodynamics and
independently by Stiickelberg and Rivier. The
latter authors designated the function by A, (x)
and called it the causal propagator. Utilizing (13)
and (57), we may also express AF(x) by

AF (X) = A (x) -2 A"l)(X) (114)
2

and from (114), it is clear that

(El-rM2 ) AF(X) = 8(X). (115)

We summarize the boundary value problem by the
relation

= f so(+)(x), x later than S

-lp(-)(x), x earlier than S.
(116)

Integral representations of AF(X) are derived
in the next subsection.

INTEGRAL REPRESENTATIONS OF THE

INHOMOGENEOUS INVARIANT A-FUNCTION

A
Let A (x) be any one of the four functions

AR, AA1, A, and AF. From the work of the preceding
subsections we have seen

(117)

Because these functions all satisfy the inhomoge-
neous Klein-GQrdon equation (117), we call these
functions, collectively, the inhomogeneous invari-
ant A-functions and the other four functions A,
lM, A( +), and A(-) the homogeneous invariant A-
functions. In contrast to the development of the
integral representations of the latter class of func-
tions from derived representations, we shall de-
velop the contour integral representation of the
function A directly from (117), utilizing to the
maximum our knowledge of the integral repre-
sentations of the homogeneous functions. A

Let us Fourier analyze the space part of A (x)
and 8(x), putting

A (2x)3 fd3kf(kxo)eikr.

Then (1 17) places as a condition on f(kxo) that
for each k it solves

&2 + co2 )f(kxo) =-(xo)

where co2 = k2 + M2 . Equations such as these may
be treated by the method of a contour integral*

*See E. L. Ince, "Ordinary Differential Equations," Dover Publica-
tions, 1956, esp. Chapter XVIII.

24
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wherein the function f(xo) =f(k,xo) is represented
as an integral of the general form

7(xo) =f dko K(xo~ko) g(ko)
C

where K(xo,ko) is chosen in a way convenient
for the differential equation for f(xo), and g(ko)
is determined subsequently by the choice of K
and requiring that the differential equation be
satisfied; C is a contour in the complex ko plane
chosen so that f(xo) not only satisfies the differ-
ential equation but so that the initial condition
on f(xo) also are satisfied. The function g(ko)
will have, in general, as many singularities in the
complex plane as the order of the differential
equation, and the contour integration must al-
ways be chosen so as to avoid these. One will be
able to choose many distinct contours, but there
will be only as many contours C as the order of the
differential equation that yield linearly independ-
ent solutions.

For our problem, we naturally choose

K(xo,ko) eikOx-

Then

- 1
(ko) -k ± 2

1
k 2 - m2 '

A
Rather than determine C so as to meet the bound-
ary conditions on f(xo), we shall go directly to the

A A
boundary conditions on A; that is, A is now given
by

Ax = (2I) J d4k 2 + 2
c2i

(118)

there always lay in the finite ko-plane, or if there
were not so chosen, were always equivalent to
contours in the finite ko-plane. These contours,
of course, were independent of x. We shall show
that for the homogeneous invariant A-function,
in particular, A (x), it is possible to choose an
infinite contour, but that this choice will be de-
pendent on xo. The importance of this result will
manifest itself in choosing contours for AR and
AA-

The contour integral for A (x) is shown in Fig. 5.
It is readily seen that two equivalent contour inte-
grals are those shown in Figs. 10 and 11. In Fig. 10,
it is readily seen that if L is allowed to go to infin-
ity, the contour thus obtained will represent C
only if xo > 0; for then the contribution from the
semicircle vanishes, while for xo < 0 the contribu-
tion of the latter integral tends toward infinity
in magnitude. Thus for xo > 0 a valid infinite
representation of the contour C for A (x) is any
line from +oo to -- (note direction) above the
real axis, or any contour equivalent to this, and
clearly, for xo < 0 it is any line from -- to +±°
parallel to the real axis but a finite distance below
it. Call the first of these contours CR and the sec-
ond CA- A

Evaluate &(x) for C = CR. We have just seen if
xN > 0, A(x) = AM(x); if xo < 0, then A(x) may be
evaluated by closing the contour above. But there
are no poles of the integrand above CR; hence
A(x) = 0 for xo < 0. Thus,

(2 ,T)4f
CR

tL
I

A
where C is a contour in the complex ko-plane to
be chosen so as to yield the conditions placed onA-i(x). The contours C are independent of x, of
course.

We have seen already that the homogeneous
invariant functions have integral representations
analogous to (118) and that the contours involved

d4k k2 m2AR(X)

Imko

co -PLANE

(1 19)

Re ko

Figure 10
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Imnko

-I I Re ko

L -

Figure 11

where CR is shown in Fig. 12. The contour for
CR is clearly infinite, which we could have known
before because all the finite contours were opted
by the homogeneous functions and their linear
combinations. Without further ado, it is clear that

1 r eik-xj 4
AA (X) = (4 dk k+

CA

-W

A

CR

Figure 12

Imko

(120)

o - PL A NE

+w Re ko

to - PLANE

+ W

Re f 0

where CA is shown in Fig. 13.

From the definition (108) of Ai(x) and the
contour integral representations of AR(X) and
AA(X) we have

) 1( r eik x
o x) ( d4k k2 + m2

A () =271)'fc

(2 ) 4 P f d4k k2+r 2

27)4-x k +M

(121)

(122)

where C is shown in Fig. 14. Finally, the Feynman
contour is readily seen to be that shown in Fig. 15;
hence

eik-x
AF (X) = (2_r) J d 4 kk+ n

C2,7)4 F k2 + M2
CF

By actually performing these contour integra-
tions, and then utilizing Dirac delta functions, we

(123) can get other useful representations. For example,
we take the function AR (x):

Figure 13

Imko

+ W Reko-W

Figure 14

. - - l < . � -

* l * F - l - l * t h r
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and

(0+6

1 d 3k dko e2 k - X
(27r) I f (2-k0 2r

W-C

f eik X8(ko - co)
f 2co

or

- 4 ) f d3k { J f ...

=_qTi +6 5(ko + c)) - 8(ko- co)

(2nT -4 f 2co
/-@--O -E+

AR (X) =-( 2
)

4 d3 k (J dko + dko

(2,-T 4 f x f
+(0-6 (0+

r r reik-x
+ f dko + J dko + f dko 2 -k02

+x0

-IeP- k2 I

AR(X) = (2 1)4

[ k2 +m2 7Ti E(k)8(k + M2)

/-eikx + f \
f J dko 0 2 - k2 J dko co2 -k2

_-f- WO-C

where P stands for principal part (which can also
be designated by applying P to the integrand in-
stead of the integral, as Eq. (124) below), and
where the last two integrals are clockwise loop
integrals above the singularities. It is straight-
forward to show

_(2~-) f d3kfdk c (2j
-@+00

f ) d3k J dko 2-k 2= (2f)d 4x

Jdkeik-r+icox0 7Z|+ eik-X8(ko + c)

Since AA(X) = AR(-X), in (124) change x to -x
and then k to -k; it follows immediately that

+x0

AA(X) = d4k eik x

[ k2+m + .+Ti E(k)8(k2 + M2 ) ],
I k 2 + in2 I (125)

From the definition of A(x), its integral repre-
sentation follows from (124) and (125) directly:

1 4 -ik.x p 1A(x) = ( )4 Jd k e 2kx 2 (126)

Imnko

ko -PLANE

+i-* Re ko

C F

Figure 15

+x0

- - (27) d4k E(k)6(k2 + m2) eik-x.-x7T)4
Thus

+x ef d4 k eik x X(

(124)
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while from (114), (126), and (54), we get

AF (x) = (2 )4 fd4k eik .x P

- 7ri T(k2 + m2)1 (127)

Another form of these integral representa-
tions may be constructed by using the positive
frequency and negative frequency parts of the
Dirac delta function. With

8 (a) = f dX e-iax
-00r

EXPLICIT REPRESENTATIONS OF

THE INHOMOGENOUS INVARIANT

FUNCTIONS; RELATIONS

It is quite evident that there are several lin-
ear relations among the various homogeneous
and inhomogeneous functions we have con-
structed. We list these without derivation, for
they are easy to prove beginning with some that
have already been established or defined:

AR(X) = 0(X) A(X)

A A(x) =-0 (-x) A (x)

A (x) = 1/2 [ AR (X) + AA (X) ]

(129a)

(129b)

(1 29c)

AF(X) = 0(X) A(+)(X) - (-X) A(-)(x).(129d)
we have

These lead to

8(+) (a) 1

8(-) (a) =2r

FdX e- ax =_8(a) ± - P ,
f 2 2in-i a'
0

J dX elal = 2 5(a) -2.7T a

AA(X) AR(-X)

A(X) = 1/2 E(X) A(X)

AF (X) =A(X) - (2

and AR(X) -AA(X) = A (X)

AR (X) =

(2I7T)3 fd4k E(k) 6(e(k)) (k2 + M2 ) eik-x

AA (x) =

T ) 3 d4k E(-k)8(e(-k))(k2 + m2 ) eik-x

A(x) =

(2vJd4k 5 )(k 2+m2)-B(-)(k2+M2) eikx
(T)fd 2

AF (X)

J) d4k (+) (k2 + M2 ) eik-x

We have already obtained an explicit represen-
tation for A (x), i.e., Eq. (78); from this and (129a)
and (129b) we get, inside the light-cone,

AR() =- E(X)(X)
AR(X)- 21T

(128)
[ (X2) - m ( X2) J1(Mi ] (131)

AA (X) = E (X) 0 (-X)

- M]6(-X2)JI(MV X]
a A2m0od lg-

and AR = AA = O outside the light-cone.

(132)

(130a)

(1 30b)

(130c)

(1 30d)
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From Eq. (1 30b) and Eq. (78), for xo $ 0,

8(X2) m 20(-x 2 ) XJ (M/52 < 0
AWx) 47r 87r (M y X)

0, X2 >0. (133)

By continuation, we define A(x) by (133) every-
where, and we find that A(x) thus defined obeys
all the requirements placed on it. Finally AF
may be represented explicitly by (130c), (133),
and (80). We shall not do so here.

THE INHOMOGENEOUS KLEIN-GORDON
EQUATION; INTEGRAL RELATIONSHIPS

OF THE A-FUNCTIONS

Consider the equation

( D-m 22)>p(X) = p(X).

|do- [9X' -^a -A(X' - X) axZ ]X'
f ~~ax~ xi

S2

4 f d4x' A(x'-x) p(x'). (135)
0

Now we cannot specify yo(x) and ad/ax, on two
separate surfaces, for we then impose, in general,
too many restrictions on the problem. We con-
sider, thus, the boundary value problems asso-
ciated with AR and AA. If our values of so, and its
derivatives are specified on some surface prior
to x, then

so(x) -f d4x' AR(X-X') p(X')

+ | Dfd [ ao(X ) AR(X - X')
S2 ax

(134)
aAR(X - X') (x ) I

If p(x) - 0, this equation reduces to (1), the
homogeneous Klein-Gordon equation; if p(x) * 0,
it is called, as we have already noted, the in-
homogeneous Klein-Gordon equation. One must
frequently solve (134) in both classical and quan-
tum-field theory, subject to certain boundary
conditions.

Let fl be a space-time region bounded by two
space-like surfaces S1 and S2, where Si is later
than S2, in such a way that Q is finite in volume
and all pertinent integrals are also finite. Let
A
A (x) be any of the inhomogeneous invariant
functions; then applying Green's identity to So(x)
and ,= A, we get, when x E Q.

9(X)= d [ - (x') Ax_~0(x) fax~
Si

A (X' X) a(xt)I+

(136)

while if the surface is Si, then

()= - f d4x' AA(x - x')p(x')

-f dog [ -- AA(x - )
S2 1

aAR(x - X') W)
ax A ]-

(137)

If we specialize (134) by taking p = 0 and so
to be any of the homogeneous invariant functions,
which we indicate by A, then

A(x)=f do4[AR(x-x') a A W)
S2

aA 4Rx-X')
-A(x') x

(continued next column) I
(138)

29



J. N. HAYES

AA (X - X') a (X )
a XA

-Ax') X;L
- A (X') a x

Z = A, AW(+, A(-), or ^(1)

and

0 ,

A (X) =1-e (x)[]
(139)

x 2
> 0

SUMMARY OF IMPORTANT FORMULAS

In this section, we bring together for easy
reference all the pertinent formulas derived in
the body of the text; we make no explanation of
the symbols, since they should all be evident by
now.

The A-Function

(Px) =

-x') daA

(°l-rm2 ) A(X) =0

A(X) = 0, X2 > 0

aA (x) I
axo I =0

A(x) =- (21j2f d3k eik,

(27r)2 3

d [ A(x-x')x

(x -x')1
ax' I

li(r)

sin CoXo

co

E(k)8(k 2 + m 2
)

The AW and A(-) Functions

doA [ A(±)(x - x') - - )
aXL

aA(±)(x -X') ] (-)(x)

(El - M 2) A9()(X) = 0

A(+) W * = A"(x)

A(±)(x) = 0, x2 > 0

(140)

A(- )(x) =+ (2 r)3 f

=- f
(141)

(27r) 4 fd k k2
+ m

2

e (x) (X2)- . M2 Kj(mN/;)
27r- 27r2 mV

x2 > 0

E(X) 8(x2) + m2 HN(2) (min\E)
27r 4 T7r m'f-

x 2 < 0, XO > 0

E(X) 8(X2 ) n2 Hi(")(mV'Ci)

27r 47r m

(142)

1 ( d4k eikex
(2r) 4 Jdk I 2 + m2

U x2 < 0, x0 < 0.

= - f do-, [
Si

where

a(X2 ) _m
2
0(-X

2
) >

2 (143)

Ji (mV)
MV-X2

I , x2 < 0.

(144)

(145)

ei(k, T-XS )

d 3k 2w

d4k eikx 0(±k) 8(k 2 + M2
)

(146)

(147)
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The A(')-Function

dcr [ A()(x - x') dY -y(+) )

dx' (X -X') ] iy(+)(x)
ax,1/

([ - m2) A(1)(X) = 0

ARE(X) = (- ( [ 8(X2)

- M2 0 (-X2)jI (m/2)

2mVx
(148)

(149)

Am W(x = I d3k e ik r COS(JXO(21) j (t) (

- 2,jf dk 8(k2 + M) eik-x(150)

I

= O(x) A (x). (154)

The AA-Function

sf
do4 {I AA(X-Xt)

= 1 0,

dy , aAA(X-X')
-- y ( ax,

x later than S

L(2iT)4| d4 k k2e+ M2
Cml

-y(x), x earlier than S

The AR-Function

do-A [ AR(X-X') a -yp(x) aAR(X-X') ]
axiA ax~

Iy(x), x later than S

0, x earlier than S

(O-iM2 )AR(x) = 8(x)

AA (X) = - (27)4 f
(151)

(152)

d4k eikkx E k4

+x4

AR(x)=- (2 7 r)4 f|d~k (27iT)3 feik- kp I
I k2+ M2

+ 7riE (k) 8 (k2 + m2) ]

- +)
=-(27r)3f| d4k eik X E (k) 8(e(k)) (k2 + M2)

= (2 7r)4 f d4k k
2 + M2

CA

AA (X) = (X)O (-X) [ (X2)

(153) M20 (-x2)Ji (m ) 1

2mi\- I

sf

}

I

(155)

(156)

-7ri E(k) 8(k 2 + M2) ]

d4k eik x E(-k) 5(& (-k)) (k2 + M2
)

JI fd4k ekikjx
(2CT4) k2 + M2
CR

(157)

(158)
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The A-Function

Jdo' -a A(x -X') 8- y( W) a x

+I(x), x later than S
(159)

-y(x), x earlier than S

(O - m2) A(x) = 8(x)

A(x) = E(X) AX (X) /2 (160)

= [ AR (X) + AA (x) ]/2

E(x) =-(2 7 )4 J d4k eikx p k 2 i 2

-- ( J d4k 8(+) (k2 + m2)-8(-) (k2 + M2 )

= (2iT)4  d4kk+ M2
c

The LAF-Function

r dox A ,- a'p aAp,(x-X')

s

I( (+)(x), x later than S

(-)(x), x earlier than S

(Ol- m 2) AF (x) = 8 (X)

AF(X) = O(X)(+)(X) - O(-X)A( )(X)

(X) A(1 )(x)
-2

AF(x) =-( J d4k eikx P 1

+ 7ri 8(k2 + m2)]

(161)

, X2 > 0

A(x) = -(162)

8(x2) + m2 0(x2) J(M\ Xi2 < ) .
47T 87r (mN~X)

1

(163)

(164)

=-(2)' f d4k eik x5(+)(k2 + M2 )-(21 f
CF

eik-x
d4 k k 2 + M2 - (165)
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Chapter 3
The Wave Equation and the Electromagnetic Field

THE WAVE EQUATION AND
THE INVARIANT D-FUNCTIONS

By setting m = 0 in the Klein-Gordon equation
we obtain the wave equation

l1oy=O. (1)

The boundary value problems for (1) do not
differ from those of the Klein-Gordon equation
and will therefore not be discussed here; to each
boundary value problem one may construct the
appropriate Green's function by taking the ap-
propriate invariant functions of the last chapter
in the limit of vanishing mass. Designating the
resultant function by D instead of A, one readily
derives the following:

D(X) =- E(X)8(X2 ) dDD~x) = ' axo IX0=O=-8(r).

D(x) =- (21)S fdk eik- sin coxo

=-(2ir) 3 f d4k E(ko)8(k 2 )eik-x

(1 f d4k e

C

=-47 {5(r-xo)-B(r+xo)}

where r = Vx- + x2 + X3 and co = -

D(+)(x) =-4 { E(X)8(X2 ) T }

= (2f) f d4 k O(± k) 5 (k2) eik-x

i ei(krwxo)

- 6(x2)

- (2JT)f d4k eikxpj1

=- i (2' f d4k f!+'(k 2) 6(-'(k 2 ) eik-

= (27 )4 J P k

ct

(4)

(5)
(2)

DR(X) = 6(x)D(x)

- f ) 6(r-xo)
-oj(x0) 4~rr

= (2
7)

3 J d4k eikx6(k 2 )

= ( 1 J d3 k eik-r COS 'OX 0 o =w

- i J d4k ei J3
(2,7)3 f k2 (

cW'

= -(21 ) f d4k eik x + 7riE(k)6(k2)]

=-(27r) 3 f d4k eikx E(k) 8(e(k))(k2)

1 f d4 k
- (2wj4 k

D(1)(x) =
1

(6)
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DA(x) = -0(-x)D(x)

= D, (-x)

6 (r +xo)= -0(-Xo) 47r+

=- ( I 4 d4k eikx [P .- ,rTiE (k),5(k2)]

- (2 T)3f d4k eik r E(-k)8(E(-k))(k 2 )

= ( )f dk -e-jf
CA

DF (x) = 4x 4r)2X2

= D(x) - D(l)(x)

- (2 1) 4 f d4k eikx [P k2 + .Ti6(k2)]

- (2 n-)3 f d4k eikx 8(+)(k2)

- (2 )4  dk -L (8)
CF

If we compare these expressions with those of
KIllen*, we find that our homogeneous functions
are identical with his, but the inhomogeneous
functions differ from his by a sign change for
DR, DA, D and by a factor 2i for De. Correspond-
ingly, his DR function, for example, satisfies
DIDR = - 8(x), while DDF - 2iW(x), in Kallen's
notation.

APPLICATION TO THE
ELECTROMAGNETIC FIELD

The free electromagnetic field is described by
the six quantities E, H which satisfy the partial
differential equations

*G. F.Ullen, "Handbuch der Physik," Vol. V., part 1, Springer-Verlag,
Berlin, 1958.

(7)

V X E =- aHl
at

V-H =0

V X H =E

V-E = 0 J

(9)

where Heaviside units have been used. It is well
known from the theory of relativity that these
equations may be combined into two equations:

AFAR, aF+ AFx = 0 (IlOa)
ax), ax, ax,

aFX' = 0 (sum over .L) (lOb)

where the Fa, are the components of an anti-
symmetric tensor under Lorentz transformations
and the F x are given, in the 1,2,3,4 notation, by

( 0 Hz

-Hz 0
(Fiax) = H

H, -iH,

iEx iE11

-H, -iEx\

H, -iE1 ,

0 -iEz

iEX 0

Equation (1Oa) is solved identically by putting

F1 x = OAx OA,,

ax, bxx

while Eq. (l0b) becomes

a2 a aA=
___ Ax --0.

aXI.LXM axx ax,

(1 1)

(12)

We then say that the Ax are determined up to a
gauge function, and changing from Ax to Ax =
AX + aXX is called a gauge transformation. We
observe that (12) differs from the wave equation
by the presence of the term axOMA,L; we shall
eliminate this term by the choice of gauge. Sup-
pose OAA does not vanish identically; then define
A' such that

34
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where X is to be chosen such that

LX=-d&,AMA.

Then computing aMA/, we see it vanishes. Equa-
tion (12) becomes

DA, - OaXAX = L1(A' - ax) - aaxA' + aMLX

= I A' = 0.

Thus, with this choice of gauge, the equations for
the four-vector {A,,} read

dr, [ D(X-X ) aA -(x') a(x- ) I
f x x

(14)

= cDx(x). (17)

The function (>x(x) transforms under Lorentz
transformations like a four-vector; furthermore,
if x E S, then

Dx (x) = AX (x)

which follows directly from the fact that

(18)

DA, = O. g = 0,1,2,3. (15)

A, is still undetermined up to a X such that
OlX and the A, must satisfy the Lorentz condition,

A = O. (16)
ax,

Equation (16) is a subsidiary condition that
guarantees that the four-vector that solves (15)
is also capable, through (11), of describing the
electromagnetic field. This may be put another
way: from the set of all solutions of the wave
equation, construct the set of all ordered quad-
ruplets of functions. From this set, select that
subset of quadruplets of functions that transform,
under Lorentz transformations, like four-vectors;
from this subset, construct that subset of four-
vectors which satisfies (10); this subset transforms
into a like subset under Lorentz transformations
because (16) is Lorentz invariant. Hence this
selection procedure is covariant. This last sub-
set is the subset of all four-vectors that describe
the electromagnetic field through Eq. (11).

We now turn to the boundary value problem
for the electromagnetic field. There would be
no problem in applying the techniques of Chap-
ter 2 and the functions D of the first section of
this chapter directly to each component A,., if
it were not for the Lorentz condition. The Lorentz
condition implies that the four-components are
coupled. Thus we may expect that A,,(x) must be
expressed not only in terms of A, and aXA, on
some surface S, but also in terms of the values of
the other three components and their derivatives
on S. However, we shall see that they may indeed
be handled as if they were independent of one
another. Consider the expression

aDI
ax0

(19)=-8(r).
. 0 =o

The question now is whether or not (>X (x)
may be regarded as an extension of Ax(x) off
the surface. To be so, it must solve the wave
equation and satisfy the Lorentz condition. It
is clear that OFx(x) solves the wave equation, for
D(x - x') does so. Next we must show that ax(x(x)
vanishes:

as (D d ., [ aD (x -, x' ) aA X (x' )
-A f axx ax)

- Ax (x') a2D (x - x')]
axxax,1

=S
iS

do; [ D(x-x') a aAx (x')
ax, ax,

- aAx aD(x -x')

ax4 ax,..

-f do-' ai [ D (X - x) a, axx' ax~

- ad~-D (x -x')~-

-Ax(x') aD(xxX) ]

The first surface integral vanishes because
Ax meets the Lorentz condition on S by hypothesis.
The second vanishes also, but the arguments are
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much different. We have seen that IDx is independ-
ent of S; choose S to be the plane xO = constant
$ xo. Then

ax = J d3x' ad D(x-L x) Jx

-Ax (x') adD - ) ]

the values of A, and OxAM on S be given by the
functions U,,M and Vx, respectively; then (20) reads

Ax(X) = f do [ D(x - x') VxdWX)

(21)

=~d3X' [Dx -x')
axf

1=1

aAi
axd

Suppose AA(x) were another four-vector that
solved the wave equation, satisfied the Lorentz
condition, and reduced to U,, on S while its
derivatives reduced to Vx,, on S. We have seen
that AX and AA must then be related by a gauge
transformation,

-A (x' aD (X-X )]

- f d3x' a~ [ D (x-X x) dxAo

-A,(x') aD(x-x') ]
axO

The integrals of the form f d3x'a[...]/ax', may
be integrated over x, from x', = - to x'i= +-
directly and these vanish by boundary values on
D(x - x'). The integrand of the last integral re-
duces to

Dx (-X'a) d2A a_ - o2 D (x- x')D ax- ') d2  aXO12

which becomes, in lieu of the fact that both AO
and D solve the wave equation,

D(x-x') a 'a 1Ao(x') -Ao(x') a 'a D(x-x')

= a, [ D(x - x') a' Ao(x') - Ao(x') a D(x - x') ]

and the integral of this vanishes by the same
argument as above. Thus adx((x) = 0.

Thus, 1x(x) solves the wave equation, satisfies
the Lorentz condition, and reduces to Ax(x)
on S; hence, (>x(x) may be regarded as an exten-
sion of Ax(x) off S, so we write (17) as

|da;'[ D(x-x') d Ax-Ax(x') aD(d x')]
S

-Ax(x). (20)

It is an easy matter to show that Ax(x) as
given by (20) is a unique extension; to do this, let

Since Ax (x) = Ax(x) = Ux(x) when x E S, we have

ax =0axx 1.,
(24)

and similarly,

a2x =0.

axaxx ,
(25)

Also,

Ezaxx = 0. (26)

From (26), axx is a function of space-time whose
values at x may be expressed in terms of its
boundary values, i.e.,

aXx(x) = f dary [ D(x-X') ada\x

(27)

But in light of (24) and (25) the right side of (27)
vanishes, and hence AX(x) 3 AX(x) for all x.

Thus, Eq. (20) may be regarded as the unique
solution to the boundary value problem for the
electromagnetic field.

where

A'X (X) = Ax (X) + ax ()

Ex(x) = 0.

(22)

(23)
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Chapter 4
The Dirac Equation

This chapter will be devoted principally to a
study of boundary value problems of the Dirac
equation. We begin by a brief study of notation,
followed by plane wave and general solutions.
We then formulate a "Green's identity" for the
Dirac equation, followed by a study of the various
Green's functions.

NOTATION; PLANE WAVES;
GENERAL SOLUTIONS

In our notation, the Dirac equation reads

(Y.a, + m) 4'(x) = 0 (1)

where the summation convention is used; the
quantities My,, p, = 1,2,3,4, are elements of a
noncommutative algebra characterized by

(6)atfy''- m+(X) = 0.

The functions qk that solve (1) are four compo-
nent quantities called spinors which transform
according to a particular representation of the
Lorentz groupt. Although we shall not discuss
the transformation properties, we do note that
if s (x) solves (6), then

Z [ -(X) W Y,(X) 1 = 0 (7)

by virtue of (1) and (6), so that the quantity
so(x) y. tft(x) transforms like a four-vector.

If we seek plane wave solutions to (1), i.e.,
solutions of the form

yA yp + yv yM = 251,y,,v = 1,2,3,4.

We define yo by

74- i)YO (3)

so that, we note, ya a, = Y V + y 4 4 = y 'V + Y0 do.
We take as a representation of the y's,

0
0

-L
0

0

0
0

i\
0

I-i0
l 0

0 O

0 +i
0 0
0 0

+i 0

/0 0 0 1\

Y2 = t0 0-1 0)

1 0 0 0

1 0 0 0
0 1 0 0
0 0-1 0
0 0 0 -1,

we find that there are four linearly independent
solutions for a given space-part of the momentum
vector k; i.e., for given k, there are four solutions.
Without going into any details (see the Dirac ref-
erence) we give the results; we label the four
solutions by

qir)(X) = u(r)(kc) eikx

where k = (kko) is a function of k and co =
'/ k2 + m2 will be defined below:

.(4)

+(l)(x) = co

( -k3A
\m+co/

ei( k- -ax 0 )

(9a)

We define +(x) by

+(x) =-(X)*74 (5)

where qf* is the conjugate transpose of qj; then
from (1), (2), and (5), one can show

= u(1)(k,) ei(k r-wxo)

tSee P. A. M. Dirac, "The Principles of Quantum Mechanics," 3rd ed.,
Oxford University Press, 1947, p. 257.

(2) +(x) = u(k) eikX (8)

0

'Y1 = 0

\-i

Y3= .
\-
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q+2 )(x) = co 0 ei(k-rwXo)

k1-ik 2

m+co I

k3n /

\m+@ 1

of such functions as ( 11); thus, for the most
general solution we have

+j(X) = (I fJ 3k[
2± Cj(k)u)(k,c))ei(k r+wXo)

j=1

(9b) 4

+ E Cj(k)au')(k,&) e i(k'-,--O) .
j=3

+(3)(x) = lX rn-No\ei(k-r+wxo)

(')0ik2

\1/
0o

We shall write this expression in a more compact
form; define

bj(k,w) a 4rwCj(k)uj(k,), j= 1,2

= U(3 )(k,o)ej(k r-xO)

41(4) (x) = 2oi

(9c)

/ ki-ik2\ ei(k r+wxo)

ka

0
1/

= u(4)(k, ) e(k-r+wxo) (9d)

These functions are normalized so that

4

EU(r)*: u(.S) = biers) (I10)

a=I

01) and qf(2) correspond to solutions with positive
energy (positive frequency while tf$3) and p(4

correspond to solutions with negative energy,
ko = -w < 0 (negative frequency).

Since t4(1), q(2), q13), and (J(4) each solve the
Dirac equation, any superposition of them will
also solve the Dirac equation; thus, for a given
momentum vector k, we can write the most
general solution of (1) as

2

k(X) E Cju 0 )(k,co) ei(k.r-wxo)
j=l

4

+ E Cj u(j)(k,co) ei(k r+wxo).
J>3

From Fourier analysis, any square integrable
function in L2 ,4 may be written as a superposition

(11)

bj- 2 (k,-w) -47rcoCjC(k)uj(k,cw) , j = 3,4.

Then after some algebra which is by now quite
familiar, we get

+x = (2'n) 4 E f d4k 6(k 2 + 7n
2) bMP)(k)eik (13)

for a plane wave expansion of the general solution
to the Dirac equation for a free electron.

A GREEN'S IDENTITY FOR THE
HOMOGENEOUS DIRAC EQUATION

Let 9p1 (x), 9o2(x), 9:3 (x), and yp4(x) be four
distinct solutions of the Dirac equation, Eq. (1);
each is a four-component column vector; thus,
the tetrad (p(x) = (01,02,03,P4) is a four-by-four
matrix and has the property that

(mYOMH + m) 9(x) = 0

'asy,- r- (x) = 0

(14)

The quantity S° (x)y,,t(x) is a four-component
quantity, a column, each of whose components
transforms under Lorentz transformations like
the gith component of a four-vector.

- U(2)(k,w)eik r wX 0 )

(12)
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In Gauss' theorem, we put f, = -p ye+i, where
P is described above. Then

af

d4x a, (x')y,(x') = f day~ -(x')y+P(x')
S5

- df do T (x')y i(x')
S 2

(15)

Choose Y5(x') such that

f d3x' y,(x'),yo'(x') = q+(x), x0' = x

i.e.,

S&(PX ) = - yoB(r' -r)

represents four separate equations which hold
simultaneously. Performing the indicated differen-
tiation in the integrand in the left side, we get a
type of Green's identity for the Dirac equation:

f d4x' I fax, YZ( W) +W 9(X)7 axZ

=-f do- -, (x'),y7t(x') + f do-' (x') yI(x')-

Si S 2 (16)

Equation (10) will hold whether or not (14) does.
Assuming (14) is valid, the left side of (16) van-
ishes; this may be seen by adding and subtracting
m7:(x')tP(x') to the integrand and using (1) and
(14). Then (16) reduces to

doJ d-r (x'),ygq+(x') = Jdo- (x'),YAWx). (17)
S, S2

Equation (17) is independent of Si and S2 because
of (1) and (14). We shall use (17) to construct an
auxiliary matrix ioT(x') in order to formulate an
integral representation of the Dirac equation that
includes the boundary values of +j(x).

THE INVARIANT HOMOGENEOUS
S-FUNCTIONS

Since (17) is independent of Si, select SI to be
the space-like hyperplane x0 = x,, and label the
auxiliary function (matrix) -(x') with x as well:
(.r-(X'). Then (17) reads, noting do-Xcyrq,, =
-drooyoq and duo =-d3X,

fd 2(X = dog fx(xt)j(x'). (18)
-x S2

or

ox(x') = -i8(r' - r). (20)

Then (18) reads

+x= f do,' 1(x' - x) y/IJI(x')

S
2

(21)

where sox(x') was rewritten in the form 0(x' -x),

taking advantage of the fact that so must be in-
variant under translations. That +p(x) may be
represented by (21) has yet to be shown; i.e.,
we must show that ip(x' - x) exists. That it does
is suggested by the fact that the Dirac equation is
equivalent to eight coupled real first-order
equations to which the Cauchy-Kowalewski
theorem may be applied. Since the latter theorem
exhibits solutions only locally, a global representa-
tion such as (21) is not yet guaranteed. We shall
prove the existence of -p by construction. We
could do this, as we constructed A (x), by using
the Fourier expansion of so as in Eq. (13). Instead
we shall proceed more directly.

We seek a solution so(x' - x) in the form

(23)

Since so(x) solves (1), X(x) must satisfy

(° - m2) x(x) = 0. (24)

The boundary condition on so becomes a con-
dition on X; putting x = 0 and x' = x, (20) becomes

= =-i5(r)

(19)

39
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or

Equation (25) will be met if

X(X) a 0, X2 > 0

'X I =85(r)
axo =O

because if (26) holds, aX/ax, 0
(25) reduces to (27). Thus,

By utilizing Schwinger's procedure to obtain
the positive and negative frequency parts of +'(x),

(25) together with (29) and (30), we can readily obtain
the propagators that give +/(+)(x), q1(-), i(+)(x),
and i>(-)(x) from the values of ip on the surface S;
these relations are easily shown to be

(26) p(+)(x) = f do-, S(+)(x - x')yqj(x')

S y
S(+)(x) e= (ya, -m) M )(x) J

(27)

(-)() = f do-h S(-)(x - x'),y,(x') |

on x. = 0  and
S(-x) e (ga - m)A(-) (x) J

(32)

(33)

X(X) =-A(x)

and

or

,( ) = (7A ax,. 1 Y4A (X)

7(x) = 4 (N y-- -id m)74xA(X)

(7YA Ix + ) A )

w(X - X) = YtL +M m)(x'-x)

= (7A a- m ) A (x-) X)

or

(28)
++( W = f do-' tI(x')YS(-)x' - x)

S

+(-)(x) = | do i (x')ygS(+I(x' -x).
S

Next, define

S(1)(x) - (YA. -m)A(') W-.

(34)

(35)

(36)

To seek the boundary value problem that S(M)(x)
solves, instead of resorting to Green's theorem,
we simply put

(37)

and noting that

The function 7,(x' - x) is generally written
S(x-x'); thus, (21) becomes

S(')(x) = (Ya - m) -a = A (x)

+t=(x) = do-A S(x-x') y. +(x')

S(x-X') = (Y ax -.m) A(x-X')

(29)

(30)

ao S(x)a + m2
we get

9(X) = - + O=(X).--- a a0
From (29) and (30), follows immediately that

W(x) = f dob q (x'W) Y S (x' - x) .
S2

Thus, if +#(x) has only positive frequency parts
(31) on S, then qi(x) has only positive frequency parts

for any point x not on S, because all Fourier

and

(38)

40

f do-4 SO) (x - x') y,,P (x') = (p (x)
S
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components of +j(x) propagate independently
for the solutions to the Dirac equation. Therefore

i+i(+)(x) = f do-A S(1) (x - x')y,.J+)(x')
S

(39)

-i+j()(x) = f do-A SM (x - x') YA" I(x'). (40)
S

From (39) and (40) one can demonstrate, after
some calculation, that S(1) solves the boundary
value problem for qj summarized in the equation
below:

-i+(+)(x) do-a W(+)(x')7S") (x'-x) (41)
S

+ i+(-)(x) = f do-A l)(x')y.S(l)(x' - x) (42)
S

Equations (36) through (42) show that S(
is the Green's function that enables one to con-
struct the positive and negative frequency parts
of a function in terms of its positive and negative
frequency parts on the space-like surface S. The
point x at which this is done may precede or be
later then S, and indeed, in view of (27) and the
derivation of S(x), x may lie on S.

The results of this section show that the matrix
functions S(x), S(+)(x), S(-)(x), and S(l)(x) play
roles quite analogous to their corresponding
A-functions, even though the equations they
solve are quite different. Further, the invariance
of these functions under Lorentz transformations
is a consequence of the invariance of the A-
functions and of the Dirac equation, but we have
not demonstrated this result. It is quite easy to do
and is left to the reader.

The integral representation in terms of a
Fourier analysis of the invariant S-functions is
quite easy to come by. Let S (x) represent any one
of the four invariant S-functions above and A be
the corresponding A-function; write

A (x) = (21 )4 f d4k A (k)eikX. (43)

Then it follows that

Sfx) = I ) f d4k (ik-y - m) A(k)eikx.

In general, if L (k) be the four-dimensional
Fourier transform of S (x), then

E (k) = (iky- m) A (k) . (45)

THE INVARIANT
INHOMOGENEOUS S-FUNCTIONS

Following the example of our study of the
Klein-Gordon equation, it is quite natural to try
to construct propagators which propagate asym-
metrically about the space-like surface S. As a
first case, let us construct a function SR which
expresses the value of qp at x in terms of its values
on S when S is prior to x, but gives zero otherwise.
Such a function will be called the retarded S-
function and its effect is summarized by

f dO A SR(X-X')-Y+(X')

+t(x), x later than S

0, x earlier than S.
(46)

Because the function S(x) vanishes outside the
light-cone, it is clear that

SR(X) = 0(X)S(X). (47)

A further property of SR(X) is readily proved,
namely,

(y7a. + m) SR(x) = 8(x) (48)

where, again, 8(x) is the four-dimensional delta
function 8(xo)8(r). Because SR(X) satisfies an
inhomogeneous Dirac equation, it will be termed
an inhomogeneous S-function; further, because
both S(x) and 0(x) are Lorentz invariant func-
tions, SR(X) is Lorentz invariant. Rewriting (47) as

SR(x) =I+ E2) S(x)

it is then easy to show that

(49)

(50)S(X) = (-Yal - m) AR(X).

44) In a similar fashion to that for defining the
(4) advanced A-function AA(x), we introduce the
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advanced S-function S,1 (X) whose
properties are

f darn S., (x-x') yalp (x')
SI

=1

Then

0, x later than S'

- +p(x), x earlier than S'.

SA(x) =- (-x)S (X)

=-1 + 2ex S(x)

('yOA + m)Si(X) = 8 (x)

and it can easily be shown that

S,1(x) = (Ya. - m) A ,(X).

For the Dirac equation, we may introdu
function S(x) that plays a role analogou
that of A(x) for the Klein-Gordon equa
define S (x) such that

s,

{1-

112qj(x), x later than S'

I2jxx earlier than 5'.

We see immediately that S(x) must be given b)

S(x) = 1/2 E(x) S(x)

and that

(yd, + m) S(x) = 8(x)

while from (56) one can show that another
pression for S (x) is

S(x) = (YB±ag-m)A(x).

defining same as (56), but since it is not difficult to show this,
we leave it to the reader.

Finally, we introduce the Feynman or causal
propagator SF(x) by defining it as

SF(X) = S(X) -2 S()(X) (59)

(51) It is a straightforward demonstration to show

Sf

(52)

(53)

dO_, SF(X - X')ygqi(X')

(+)(x), x later than S'

- q(-)(x), x earlier than S'
(60)

and it is obvious that

(ya,. + m) SF(X) = 8(X).

(54) From (58), (59), and (36) it follows
that

ce a

Is to

tion;

(61)

immediately

SF(X) = (ygO9 - m)AF(X) (62)

If S(x) represents anyone of the four in-
homogeneous invariant S-functions of this section
and A(x) its analogue for the Klein-Gordon
equation, and if the Fourier transform of A(x)
is denoted simply_ by A(k), then the integral

(55) representation of S(x) (that is, its Fourier trans-
form) is clearly given by

S(x) = (2W )4f d4k (iyk - m) Ai(k)eik. (63)
(.5b)

(57)

r ex-

(58)

The steps involved in the proof of (58) are several
in number and it is not obvious that (58) is the

Finally, because all the invariant S-functions,
homogeneous and inhomogeneous, are related
to their analogues for the Klein-Gordon equation
in the same way, i.e.,

Si (x) = (Ya - m) Ai (x) (64)

all the relations between the A-functions also
obtain for the S-functions and will therefore
not be repeated here.
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APPENDIX
Alternative Derivation of the S-Function

In this appendix, we give an alternative deriva-
tion of the function S (x - x') of Chapter 4, Equa-
tion (30) along with an alternative derivation of
Equation (29) of the same chapter.

Since each component of a Dirac spinor solves
the Klein-Gordon equation, we may use Equation
(25) to express ja (X), a typical component, in
terms of qfa(x') and aqjp(x')/ax' on a given
surface. Of course, for the Dirac equation adIa (x') /
ax' cannot be specified independently of iPa(x')
(a = 1, 2, 3, 4) on the surface, and that will prove
the key to this development of equation (29).
We have

ia(X) =fdi {A (X - X) aq,(x')
qj. W faxA

aA(X-XI) qP(x') } (a= 1, 2, 3, 4). (Al)

The four equations represented by (Al) may be
combined together in a matrix equation for the
column vector +j(x):

IP(X) = J do { A (x-X ) ax*

axa,
ax, I

Choose S' to be the surface {x'Ilxo =
then (A2) becomes

(x)=-Jd3X{ (X -X') 0

aA (x - x) ,(X)I
axo ,

(A2)

const.};

Inserting (A4) into (A3) and integrating by parts,
we obtain

qx)= f-d3x [(aiz, -ato -im)A(x-x')

a x+Jd3 x' AXa1 - [AV(X-XT')q (X')] . (AS)

The last term of (A5) vanishes because of the
boundary conditions on A(x - x'); using this fact
and the relations

ai = i- ij4

f3 = 74

2-174=

(A4) then becomes

+X - f d3xoi I( - 7 M am - m)A(x-x')A X

4 q+(x')

=f do-' [ ( + CYS ax -m) Ax (- X )] X (A6)

'Y4 I (x )

since id 3x = do-4 and a/ax', A (x - x') =-a/ax,
A(x - x'); finally a Lorentz transformation that
alters S' to a more general surface yields a relation
of the form

(A3)

The quantity aiPlax'o may be expressed in terms
of qP or S' and the spatial derivative of 4i (i.e.,
the derivatives of tp parallel to the surface S',
all of which are known when qj is known on S')
by Dirac equation:

aXq =-a a; )-ufimP8(x'). (A4)

S (x -x) = a -(x -x') Sy q (x').

S(X - X) = (fa, - M) S(x - x'). (A7)

The nicest part of the derivation of (A7) is
that the method may be applied directly to any
relativistic wave equation for free particles;
the same technique may be used to develop a
propagator S(+) and S(-) as well, and only minor
modifications are necessary to develop in this
manner the other propagators.
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Chapter 5
THE ROLE OF THE PROPAGATORS

IN QUANTUM FIELD THEORIES

The invariant functions derived in the previous
three chapters are of particular significance in the
quantum field theories of the pi mesons, photons,
electrons, and nucleons. In particular, these
functions arise in the commutators and anti-
commutators of field operators for bosons and fer-
mions respectively, and in the perturbation de-
velopment of the S-matrix. While it is not our
intention here to develop quantum field theories
in full, or even the field theory of any one such
field, we should like to do a few simple illustrative
calculations to demonstrate how these functions
enter the theory. For this purpose, we shall
study, in part, a scalar meson field, which is about
the simplest of the theories and yet is quite
analogous in its development to all other fields.
In its simplicity it avoids such complications as the
need for the introduction of an indefinite metric;
hence some modifications have to be made when
extending the results to the electromagnetic
field, but little or no changes in the general
approach.

Our approach to the subject will be along fairly
"classical" lines. We note first that the field equa-
tion for an unquantized scalar meson field is the
Klein-Gordon equation:

(M -m 2 )p(x)=° (1)

We should like to construct a Lagrangian, L,
whose corresponding Euler-Lagrange equation
is (1). This procedure is well treated in many
books*, where one finds for a suitable Lagrangian

1F4,a 2 21
L [ ( awo )2 2 2 J (2)

as one may readily verify by calculating the
Euler-Lagrange equation with (2). The momen-
tum canonically conjugate to sp is

"Sec G. Wentzel, "Quantum Theory of Fields," Interscience, 1949.

7r (X) = aL = ado (r,t)
aw dat (3)

Now in the first step of quantizing a field, we re-
gard the field components and the canonically
conjugate momenta no longer simply as functions,
but also as elements, indeed, generators, of a
noncommutative algebra wherein the fundamental
relationship, for our case, is given by

[7T(r,t), qj(r',t)]- = 7(r,t)(p(r',t) -,p(r',t)7r(r,t)

(4)

We shall again take 11 = 1; then with (3), (4) reads

[ art r (tr)t) 1 i8(r-r')
I at , I~t =~8r-' (5)

Equation (4) or Eq. (5) provides the fundamental
statement about the noncommutativity of the
elements of algebra and has been used in this
form in many treatments.* It suffers from a defect
however in that the time coordinate is singled
out in a manner different from the space co-
ordinate. What we shall show is that this defect
is simple to remove and that we can develop an
expression for the commutator of so at the space-
time point x and for S° at x' in a Lorentz invariant
manner.

Let S" be a space-like hypersurface on which
the classical function yo(x) and its derivatives are
defined. We have seen that from these data we
may obtain to at x' by Eq. (25) of Chapter 2, that
is, by

P (X) =f| do [ A (X' -X ) ax,
s"

- O(X ) aA(x'- XI )]
(6)

*Ibid.

= _h 5(r - r.).
i
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Now even though the so's have been now con-
sidered as elements of a noncommutative algebra,
they still satisfy (1), and hence (6) will remain
valid. Thus,

(10)

which is what we were seeking.
From (10) it follows by simple substitution that

which leads to

and also that

(7) [ o(+)(x), p (x + rn') ] - iA(+)(x - x- Tn')

which leads finally to

-fdo-" (XS I ,) IO(X) (XI') ].
Stt

We recognize that S" is quite arbitrary except
insofar as it is space-like and therefore utilize
this freedom by choosing it so that it is the hyper-
plane S" = { x"l t" = t } going through the
point t" = t. Then (7) becomes, according to
Eq. (32) of Chapter 1,

[ W(x), f(x') ] = d3 x" A (r' - r", t' - t)

[ () aWr t)]

d3X" aA(r' -r", t' -t)

f at

[,p(r,t), (p(r",t]_ (8)

Putting (5) into (8), we get an integral equation
for the commutator:

[ P (x) , P (x') I = -iA (x - x)

+ J Ad3 A I a(r' - r", t' -t) t")

t=t(9)

Utilizing the method of iteration and the fact
that A(x - x') vanishes for space-like intervals
x - x', it is simple to see that the solution to (9)
is simply

(1 1)

[ p(-) (x), ((+) (X') I = - i(-) (x- X') (12)

Before continuing with this development, it
is interesting to examine some of the assumptions
that have been tacitly made above with respect to
the mathematical formalism that is used. It is
not our purpose to go into a discussion of the
mathematics on a rigorous basis; such a project
would be, without doubt, of great value in under-
standing what we shall be doing and what we can
do but would be too vast a subject to cover ad-
equately here. We choose only to point out two or
three of the major points in field theory that
require some detailed mathematical study and to
give an idea where one may find helpful infor-
mation.

The first point comes up immediately upon
applying the technique of second quantization.
We have asserted that the classical field functions
must no longer be regarded as ordinary functions
but as elements of a noncommutative algebra.
To understand the meaning of this, let us return
to the definition of a function as we ordinarily
encounter. If D = { xja S x S b }, that is, if D
be the set of all real members on the closed in-
terval between a and b, and if R = { ylc s y - d },
and if there is a correspondence between D
and R, that is, if to every element in D we asso-
ciate one element of R, then we say that there
is a mapping of D into R; D is called the domain
and R the range of the map. The collection

45

[ (P (X) , P (XI) I = - iA (X - XI)

k0(-1-1 (X) , P (XI) I = -iA(+) (X - XI)

I P(+) W , P(-) (XI) ] = - iA(+) (X - XI)

[ P (X) , P (XI) I = f do-; A (XI - XI,)

,P W, ax"I AL I
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of all ordered pairs (xy) where y is the image of
x under the given map is called the graph of the
map. The map is also called a function. The
usual prescription for specifying the function is
to give a formula for computation of one or more
of the ordered pairs (x,y); the formula is rep-
resented in general by the equation y = f(x).
Suppressing the independent variable x in the
set of all the ordered pairs (x,y), we see then that
the function is specificed by the totality of its
values in the range R, and an essential feature of
the function is the clear representation of what its
domain is and what its range is. In our simple
example, the domain and range were both sub-
sets of the real line. In the theory of functions of
n real variables, the domain will be a subset of
El,, the n-dimensional Eucledian space and the
range the real line, or the domain might be an
n-dimensional hypersurface in an n+1 dimensional
space with the real line as the range.

But the range need not be restricted to the real
line. If, for example the range of the function
were El,, while D were the real line, the function
would 'be described as an n-dimensional vector
function on the real line. In the case of our field
theory, the domain of our functions is the space-
time continuum, while the range is some subset
of some noncommutative algebra, which has
yet to be specified in greater detail. If p symbolizes
one 'particular such function, D -> R and x E D,
then the image element of x under (p will be
denoted simply by p(x), where x = (r,t). If qi is a
second map of D into R, D - R, then the image
of x will be denoted by +p(x), and of course
+f(x) E R.

It becomes necessary to define equality of two
functions. Many definitions are readily available,
but the two most useful are: (a) p = ip if so(x) =
+(x), all x eD and (b) p = qp if ~p(x) = +p(x), almost
all x E D, where "almost all" means p(x) = +p(x)
everywhere in D except on a set of measure zero.
In the latter case, it is convenient to introduce the
notion of equivalent classes as in the theory of
measurable functions, but we shall not go into
this in any more detail. We shall assume hence-
forth that some acceptable definition of equality
of two maps or functions is given.

If p and 'p are any two maps of D - R, we may
then define a third map ir of D - R, because of
the fact that R is an algebra, by

and or will be symbolically denoted by p + 'P.

Let A ={ I X,p... I be the field over which the
algebra R is defined; because R is an algebra, then
such quantities as XA(x) + wP(x') are defined
and belong to R. Such quantities must be regarded
as distinct from the sum of two functions, being
merely the sum of two elements in the algebra.

Now an algebra R, though it may contain an
infinite number of elements, when treated within
the framework of algebra, is studied only by finite
means; by this we mean only finite sums, dif-
ferences, and products are considered. But we
asserted that among the functions o and qp, etc.,
are those which satisfy the Klein-Gordon equation,
or its equivalent integral equation with the desired
boundary conditions. But it is clear that to give
meaning to these latter concepts it is necessary to
introduce concepts of analysis such as limit
points and infinite sums. That such a procedure
will work for our algebra R is intuitively clear,
since it can readily be done in the space of all
functions on D onto the real line and since these
notions do not require any alteration on account
of the noncommutativity of the algebra. Once
having found a successful formulation of these
analytical concepts for our algebra, one can then
go on to introduce the analogues of derivative,
Riemann integrals, and Lebesgue integrals, each
case being a map of some subset of R into R.

One would then imagine that the next step in a
mathematically rigorous discussion of our field
theory would be to establish the existence of
solutions to the field equations (1) or (6) consistent
with the commutation rules. Indeed, if our algebra
R were specified in detail beforehand, this would
be the next step. On the other hand, as we have
seen, R is not so specified; indeed, what we must
do is to assert the existence of such solutions and
use these as a basis for constructing, by the
operations allowed in our algebra, the rest of the
algebra.

Once having obtained the structure of our
algebra, we may introduce mappings of the set of
all mappings of D into R into itself. If p and a
be two maps of D into R such that p is the image
of a under the map F, say, we shall denote it by
,o = F(a) symbolically, which expresses a relation-
ship between all the values so(x) and those of
a(y). One used often in field theory is

50(X) = (24f) f a(k)eikxd 4 k
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where we now assume that meaning has been given
to the integral sign. For functions in L2 (--o, +x)
the Fourier integral transform is given by just
such a formula and its inversion is well under-
stood. However, the inversion of such a trans-
formation when So(x) and a(k) for each x and k
respectively are elements of our algebra must be
established anew.

The mathematical points touched upon in the
discussion of the above few paragraphs are usually
glossed over in most field theory studies, as we
have done in our development. The development
proceeds along the lines dictated by formalism
and intuition. It is in this spirit that we proceed
to derive one more result in field theory; namely,
we assume the correctness of a theory of Fourier
transforms for our field quantities which is
formally identical to the theory of the Fourier
transform for generalized functions. Thus we
assume the existence of elements a(k) such that

(x) = f d4k a(k)eik x

a(k) = f d4 x (p(x)e-ik x
(13)

Assuming that so(x) obeys the Klein-Gordon
equation, these reduce to the form

1(X) = (2 )31 2 f d4k [ a ( k ) ei(k r -wt)

+ a*(k)ei(kr-Wt) ] (14)

where here a*(k) does not mean anything other
than a*(k) is different from a(k). Equations (14)
and (11) together yield a commutation result for
the a's:

[ a(k), a*(k) ] = 8(k-k'). (15)

The physical interpretation of (14), (15), and
a(k) and a(k) are too familiar to go into here.
We could go on to show how the T and P products
come about in the theory and are expressible in
terms of the propagators derived in the previous
chapters. This we leave to the interested reader.
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